Patents by Inventor Craig N. Faller

Craig N. Faller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944366
    Abstract: An end-effector is disclosed including an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and electrically couple to a pole of an electrical generator and a clamp arm including a clamp jaw and a cantilever electrode fixed to the clamp jaw. The cantilever electrode is configured to electrically couple to an opposite pole of the electrical generator. The clamp arm may include an I-beam shaped clamp arm pad and the cantilever electrode is disposed between the I-beam. The clamp jaw, the cantilever electrode, and the clamp arm pad may define recesses along a length coinciding with the ultrasonic blade. The clamp arm pad may be fixed to the clamp jaw and disposed between the clamp jaw and the cantilever electrode and may extend beyond the surface of the cantilever electrode. The clamp arm may include a stationary gap setting pad and movable floating gap setting pads.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 2, 2024
    Assignee: Cilag GmbH International
    Inventors: Craig N. Faller, Richard W. Flaker, Nina Mastroianni, John E. Brady, Frederick E. Shelton, IV, Jeffrey D. Messerly
  • Publication number: 20240009488
    Abstract: An apparatus comprises a body, a shaft assembly, an end effector, and a shield member. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is movable toward the ultrasonic blade to compress tissue against the ultrasonic blade. The shield member is selectively movable from a first position to a second position in response to movement of the clamp arm toward the ultrasonic blade. The shield member is configured cover at least a first portion of the ultrasonic blade in the first position. The shield member is configured to uncover the first portion of the ultrasonic blade in the second position.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Inventors: Michael J. Stokes, Jacob S. Gee, Kevin D. Felder, Tylor C. Muhlenkamp, Patrick J. Scoggins, Craig N. Faller, Jeffrey D. Messerly, David J. Cagle, William B. Weisenburgh, II
  • Patent number: 11864786
    Abstract: Systems, devices, and methods are operable to track usage of a surgical instrument and modify the performance of the surgical instrument based on the prior usage of the surgical instrument. Some surgical instruments are designed to have a limited service life beginning at their first use, or a limit to their overall usage in order to ensure safe use of the sensitive instruments. However, a lack of ability to track usage characteristics when the instrument is separated from an external power supply allows for user abuse and avoidance of such safety mechanisms. Adding a battery or capacitor to the instrument may allow for an ability to track usage when the instrument is separated from an external power supply. Implementing special user prompts, device use ratios, and device use half-life upon powering down of an instrument may additionally be used to prevent circumvention of safety features.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: January 9, 2024
    Assignee: Cilag GmbH International
    Inventors: Craig N. Faller, Benjamin D. Dickerson, Jeffrey L. Aldridge, Jeffrey A. Bullock, Richard W. Timm, Ryan M. Asher, Timothy S. Holland, Craig T. Davis, Christina M. Hough, Cory G. Kimball, Ashvani K. Madan, David C. Yates, Shan Wan, Jacob S. Gee, Joseph E. Hollo, Chad P. Boudreaux, John B. Schulte, Tylor C. Muhlenkamp, Brian D. Black
  • Patent number: 11844545
    Abstract: An ultrasonic device may include an ultrasonic system including a transducer coupled to an ultrasonic blade, A method of delivering energy to the device may include sensing a vessel contacting the blade, identifying that the vessel is calcified, and generating a warning. In some aspects, the method further includes disabling one or more activation functions of the blade. In another aspect, the method further includes generating a message to apply compression to the vessel for a predetermined period, disabling activation functions of the blade during compression, and enabling activation functions after the expiration of the compression period. In yet another aspect, the method includes applying a compressive clamp force to the calcified vessel by driving a clamp arm toward the blade, disabling activation functions of the blade during compression, and enabling the activation functions after adjusting the compressive force. An ultrasonic surgical instrument may effect the method.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 19, 2023
    Assignee: Cilag GmbH International
    Inventors: Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller
  • Publication number: 20230381547
    Abstract: A surgical instrument includes an end effector and a handle assembly. The end effector is configured to operate at a first energy level and at a second energy level. The end effector is further configured to transition between an open position and a closed position. The end effector is configured to grasp tissue in the closed position. The handle assembly includes a body, a trigger, and an activation element. The trigger is configured to pivot in a first direction relative to the body to actuate the end effector from the open position to the closed position. The activation element is configured to activate the end effector at either the first energy level or the second energy level. The trigger is configured to either activate the activation element or determine whether the end effector operates at the first energy level or the second energy level.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 30, 2023
    Inventors: Charles J. Scheib, Benjamin M. Boyd, Paul F. Riestenberg, Craig N. Faller, Allison Hamilton, Patrick J. Swindon, Christopher J. Chermside-Scabbo, Kevin L. Houser, David J. Cagle, Geoffrey S. Strobl, Benjamin J. Danziger, Rudolph H. Nobis
  • Publication number: 20230355265
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Application
    Filed: April 6, 2023
    Publication date: November 9, 2023
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11801399
    Abstract: An apparatus comprises a body, a shaft assembly, an end effector, and a shield member. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is movable toward the ultrasonic blade to compress tissue against the ultrasonic blade. The shield member is selectively movable from a first position to a second position in response to movement of the clamp arm toward the ultrasonic blade. The shield member is configured cover at least a first portion of the ultrasonic blade in the first position. The shield member is configured to uncover the first portion of the ultrasonic blade in the second position.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: October 31, 2023
    Assignee: Cilag GmbH International
    Inventors: Michael J. Stokes, Jacob S. Gee, Kevin D. Felder, Tylor C. Muhlenkamp, Patrick J. Scoggins, Craig N. Faller, Jeffrey D. Messerly, David J. Cagle, William B. Weisenburgh, II
  • Patent number: 11786291
    Abstract: An end-effector is disclosed. The end-effector includes a clamp arm and an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and electrically couple to a pole of an electrical generator. The clamp arm includes a clamp jaw, a clamp arm pad, and a cantilever electrode that is free to deflect. The cantilever electrode is configured to electrically couple to an opposite pole of the electrical generator. Also disclosed are configurations where the clamp arm includes a peripheral cantilever electrode and a clamp arm pad extending beyond the electrode, a floating cantilever electrode and a resilient clamp arm pad, an interlocked cantilever electrode plate and a clamp arm pad configured to receive the plate, a laterally deflectable cantilever electrode and a clamp arm pad extending beyond the electrode, and a flexible cantilever electrode and a clamp arm pad extending beyond the electrode.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: October 17, 2023
    Assignee: Cilag GmbH International
    Inventors: John M. Sarley, Chad P. Boudreaux, Tyler N. Brehm, Wei Guo, Ellen E. Burkart, Jeffrey D. Messerly, Craig N. Faller, Robert S. Bishop, Michael A. Keenan, William A. Olson, Richard W. Flaker, Frederick E. Shelton, IV
  • Patent number: 11786289
    Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a first electrode and a second electrode. The first and second electrodes are operable to cooperate to apply bipolar RF energy to tissue.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 17, 2023
    Assignee: Cilag GmbH International
    Inventors: Jason R. Lesko, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, Nathan Cummings, Ellen Burkart, William D. Dannaher, Christina M. Hough, Craig N. Faller, Adam N. Brown, Jeffrey D. Messerly, Kai Chen, William E. Clem
  • Publication number: 20230277205
    Abstract: The present disclosure is directed to end effectors. An end effector includes an outer shaft extending along a longitudinal axis and an inner shaft partially located within the outer shaft. The end effector may include an ultrasonic blade. The inner shaft may include biased and unbiased portions. The inner shaft and outer shaft may be translatable relative to one another. At one translatable position, the biased portion of the inner shaft may be located within the outer shaft and the unbiased portion may be substantially straight along the longitudinal axis. At another translatable position, the biased portion of the inner shaft may be located outside of and distally positioned from the outer shaft such that the biased portion of the inner shaft is bent away from the longitudinal axis.
    Type: Application
    Filed: February 17, 2023
    Publication date: September 7, 2023
    Inventors: William A. Olson, Jeffrey D. Messerly, Daniel W. Price, Kevin L. Houser, Craig N. Faller, William D. Dannaher, Sora Rhee, Tylor C. Muhlenkamp
  • Patent number: 11745031
    Abstract: A surgical instrument includes an end effector and a handle assembly. The end effector is configured to operate at a first energy level and at a second energy level. The end effector is further configured to transition between an open position and a closed position. The end effector is configured to grasp tissue in the closed position. The handle assembly includes a body, a trigger, and an activation element. The trigger is configured to pivot in a first direction relative to the body to actuate the end effector from the open position to the closed position. The activation element is configured to activate the end effector at either the first energy level or the second energy level. The trigger is configured to either activate the activation element or determine whether the end effector operates at the first energy level or the second energy level.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 5, 2023
    Assignee: Cilag GmbH International
    Inventors: Charles J. Scheib, Benjamin M. Boyd, Paul F. Riestenberg, Craig N. Faller, Allison Hamilton, Patrick J. Swindon, Christopher J. Chermside-Scabbo, Kevin L. Houser, David J. Cagle, Geoffrey S. Strobl, Benjamin J. Danziger, Rudolph H. Nobis
  • Patent number: 11744607
    Abstract: An apparatus includes a shaft assembly and an end effector. The shaft assembly includes a first coupling member and a second coupling member. The first coupling member and the second coupling member are configured to flex toward each other from a first position to a second position. The first coupling member and the second coupling member define a pivot axis in the first position. The end effector includes an ultrasonic blade and a clamp arm. The clamp arm is configured to couple or decouple with the shaft assembly when the first coupling member and the second coupling member are in the second position. The clamp arm is configured to pivot toward and away the ultrasonic blade about the pivot axis when the first coupling member and the second coupling member are in the first position.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: September 5, 2023
    Assignee: Cilag GmbH International
    Inventors: John A. Hibner, Richard C. Smith, Catherine A. Corbett, Craig N. Faller, David A. Witt
  • Publication number: 20230263548
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 24, 2023
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Jeffrey D. Messerly, Fergus P. Quigley, Tamara S. Widenhouse
  • Publication number: 20230233245
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclsoed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ( t ) = V g t I g t . The control circuit receivs a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: October 10, 2022
    Publication date: July 27, 2023
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Patent number: 11707293
    Abstract: A method of ultrasonic sealing includes activating an ultrasonic blade temperature sensing, measuring a first resonant frequency of an ultrasonic electromechanical system that includes a transducer coupled to the blade via a waveguide, making a first comparison between the measured first resonant frequency and a first predetermined resonant frequency, and adjusting a power level applied to the transducer based on the first comparison. The first predetermined frequency may correspond to an optimal tissue coagulation temperature. The method may further include measuring a second resonant frequency of the system, making a second comparison between the measured second frequency and a second predetermined frequency, and adjusting the power level based on the second comparison. The second predetermined frequency may correspond a melting point temperature of a clamp arm pad. An ultrasonic instrument and a generator may implement the method.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: July 25, 2023
    Assignee: Cilag GmbH International
    Inventors: Kristen G. Denzinger, Cameron R. Nott, Madeleine C. Jayme, Patrick J. Scoggins, Craig N. Faller
  • Publication number: 20230225754
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Application
    Filed: February 17, 2023
    Publication date: July 20, 2023
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. D'Uva, Craig N. Faller, John B. Schulte, Kristen G. Denzinger, Joseph E. Hollo, Jason R. Sullivan, Brian D. Black, Frederick L. Estera, Stephen M. Leuck, Tylor C. Muhlenkamp, Gregory A. Trees, Gregory W. Johnson
  • Patent number: 11701139
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency. The control circuit controls the temperature of the ultrasonic blade based on the inferred temperature.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: July 18, 2023
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11684385
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 27, 2023
    Assignee: Cilag GmbH International
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. D'Uva, Craig N. Faller, John B. Schulte, Kristen G. Denzinger, Joseph E. Hollo, Jason R. Sullivan, Brian D. Black, Frederick L. Estera, Stephen M. Leuck, Tylor C. Muhlenkamp, Gregory A. Trees, Gregory W. Johnson
  • Patent number: 11678901
    Abstract: An ultrasonic device may include an electromechanical ultrasonic system that includes an ultrasonic transducer coupled to an ultrasonic blade. A method of delivering energy to the ultrasonic device may include sensing a vessel type in contact with the blade, determining that the vessel type is either a vein or an artery, and delivering power to the transducer based on the vessel type. Power may be applied to the transducer at a power level P that differs from a nominal power level Pn for a period T that differs from a nominal period Tn based on the vessel. The power level P may be lower than Pn for a period T that is longer than Tn when the vessel is a vein. Alternatively, the power level P my be greater than Pn for a period T that is shorter than Tn when the vessel is an artery.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 20, 2023
    Assignee: Cilag GmbH International
    Inventors: Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller
  • Publication number: 20230142303
    Abstract: An ultrasonic instrument includes a body, an actuation assembly, a shaft assembly, and an end effector. The actuation assembly includes a mode selection member and an activation member. The shaft assembly extends distally from the body. The shaft assembly includes an acoustic waveguide. The end effector includes an ultrasonic blade. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The end effector is configured to be activated in a first activation mode in response to actuation of the activation member when the mode selection member is in a first position. The end effector is configured to be activated in a second activation mode in response to actuation of the activation member when the mode selection member is in a second position.
    Type: Application
    Filed: November 29, 2022
    Publication date: May 11, 2023
    Inventors: Paul F. Riestenberg, Benjamin M. Boyd, Jacob S. Gee, Craig N. Faller, Charles J. Scheib, Thomas C. Gallmeyer, Katelynn Kramer, Ryan M. Asher, Tylor C. Muhlenkamp, Geoffrey S. Strobl, David A. Monroe