Patents by Inventor Craig R. Metzner

Craig R. Metzner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130333621
    Abstract: An integrated deposition system is described that is capable of vaporizing low vapor pressure liquid precursors and conveying the vapor to a processing region to fabricate advanced integrated circuits. The integrated deposition system includes a heated exhaust system, a remote plasma generator, a processing chamber, a liquid delivery system, and a computer control module that together create a commercially viable and production worthy system for depositing high capacity dielectric materials from low vapor pressure precursors.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 19, 2013
    Inventors: Bobby M. RONSSE, Craig R. METZNER, Richard Omar COLLINS
  • Patent number: 8496780
    Abstract: An integrated deposition system is described that is capable of vaporizing low vapor pressure liquid precursors and conveying the vapor to a processing region to fabricate advanced integrated circuits. The integrated deposition system includes a heated exhaust system, a remote plasma generator, a processing chamber, a liquid delivery system, and a computer control module that together create a commercially viable and production worthy system for depositing high capacity dielectric materials from low vapor pressure precursors.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: July 30, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Bobby M. Ronsse, Craig R. Metzner, Richard Omar Collins
  • Patent number: 8382180
    Abstract: An apparatus for transferring substrates in a processing system where the substrate is exposed to high temperatures is provided. In one embodiment a blade for transporting a substrate is provided. The blade comprises a base having an arcuate lateral shoulder, a first finger extending outward from and perpendicular to the base, a second finger extending outward from the base and parallel to and spaced-apart from the first finger, a first support tab configured to support the substrate and positioned along the arcuate lateral shoulder, a second support tab configured to support the substrate and coupled with the first finger, and a third support tab configured to support the substrate coupled with the second finger, wherein the arcuate lateral shoulder extends from an outer edge of the first finger to an outer edge of the second finger.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: February 26, 2013
    Assignee: Applied Material, Inc.
    Inventors: Dinesh Kanawade, Craig R. Metzner, Chandrasekhar Balasubramanyam
  • Patent number: 8343279
    Abstract: Embodiments of the invention provide apparatuses and methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: January 1, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Nyi Oo Myo, Kenric Choi, Shreyas Kher, Pravin Narwankar, Steve Poppe, Craig R. Metzner, Paul Deaten
  • Patent number: 8282992
    Abstract: Embodiments of the invention provide methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral, or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 9, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Nyi Oo Myo, Kenric Cho, Shreyas Kher, Pravin Narwankar, Steve Poppe, Craig R. Metzner, Paul Deaten
  • Patent number: 8071167
    Abstract: Embodiments of the present invention relate to a surface preparation treatment for the formation of thin films of high k dielectric materials over substrates. One embodiment of a method of forming a high k dielectric layer over a substrate includes pre-cleaning a surface of a substrate to remove native oxides, pre-treating the surface of the substrate with a hydroxylating agent, and forming a high k dielectric layer over the surface of the substrate. One embodiment of a method of forming a hafnium containing layer over a substrate includes introducing an acid solution to a surface of a substrate, introducing a hydrogen containing gas and an oxygen containing gas to the surface of the substrate, and forming a hafnium containing layer over the substrate.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: December 6, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Shreyas S. Kher, Shixue Han, Craig R. Metzner
  • Publication number: 20100239758
    Abstract: Embodiments of the present invention relate to a surface preparation treatment for the formation of thin films of high k dielectric materials over substrates. One embodiment of a method of forming a high k dielectric layer over a substrate includes pre-cleaning a surface of a substrate to remove native oxides, pre-treating the surface of the substrate with a hydroxylating agent, and forming a high k dielectric layer over the surface of the substrate. One embodiment of a method of forming a hafnium containing layer over a substrate includes introducing an acid solution to a surface of a substrate, introducing a hydrogen containing gas and an oxygen containing gas to the surface of the substrate, and forming a hafnium containing layer over the substrate.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 23, 2010
    Inventors: Shreyas S. Kher, Shixue Han, Craig R. Metzner
  • Patent number: 7674337
    Abstract: The present invention provides methods, systems, and apparatus for epitaxial film formation that includes an epitaxial chamber adapted to form an epitaxial layer on a substrate; a deposition gas manifold adapted to supply at least one deposition gas and a carrier gas to the epitaxial chamber; and an etchant gas manifold, separate from the deposition gas manifold, and adapted to supply at least one etchant gas and a carrier gas to the epitaxial chamber. Numerous other aspects are disclosed.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: David Ishikawa, Craig R. Metzner, Ali Zojaji, Yihwan Kim, Arkadii V. Samoilov
  • Patent number: 7569501
    Abstract: Embodiments of the invention provide methods for forming hafnium materials, such as oxides and nitrides, by sequentially exposing a substrate to hafnium precursors and active oxygen or nitrogen species (e.g., ozone, oxygen radicals, or nitrogen radicals). The deposited hafnium materials have significantly improved uniformity when deposited by these atomic layer deposition (ALD) processes. In one embodiment, an ALD chamber contains an expanding channel having a bottom surface that is sized and shaped to substantially cover a substrate positioned on a substrate pedestal. During an ALD process for forming hafnium materials, process gases form a vortex flow pattern while passing through the expanding channel and sweep across the substrate surface. The substrate is sequentially exposed to chemical precursors that are pulsed into the process chamber having the vortex flow.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Patent number: 7569500
    Abstract: Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone one or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Patent number: 7531468
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydrofluoric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 12, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Shixue Han
  • Publication number: 20090110520
    Abstract: Embodiments of the present invention as recited in the claims generally provide an apparatus for transferring substrates in a processing system where the substrate is exposed to high temperatures. In one embodiment a blade for transporting a substrate is provided. The blade comprises a base having an arcuate lateral shoulder, a first finger extending outward from and perpendicular to the base, a second finger extending outward from the base and parallel to and spaced-apart from the first finger, a first support tab configured to support the substrate and positioned along the arcuate lateral shoulder, a second support tab configured to support the substrate and coupled with the first finger, and a third support tab configured to support the substrate coupled with the second finger, wherein the arcuate lateral shoulder extends from an outer edge of the first finger to an outer edge of the second finger.
    Type: Application
    Filed: October 30, 2008
    Publication date: April 30, 2009
    Inventors: Dinesh Kanawade, Craig R. Metzner, Chandrasekhar Balasubramanyam
  • Patent number: 7304004
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydroflouric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: December 4, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Shixue Han
  • Patent number: 7067439
    Abstract: Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: June 27, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Patent number: 6858547
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydroflouric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: February 22, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Shixue Han
  • Publication number: 20030232511
    Abstract: Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
    Type: Application
    Filed: September 19, 2002
    Publication date: December 18, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Publication number: 20030232506
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydroflouric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Application
    Filed: September 27, 2002
    Publication date: December 18, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Shixue Han
  • Publication number: 20030232501
    Abstract: Embodiments of the present invention relate to a surface preparation treatment for the formation of thin films of high k dielectric materials over substrates. One embodiment of a method of forming a high k dielectric layer over a substrate includes pre-cleaning a surface of a substrate to remove native oxides, pre-treating the surface of the substrate with a hydroxylating agent, and forming a high k dielectric layer over the surface of the substrate. One embodiment of a method of forming a hafnium containing layer over a substrate includes introducing an acid solution to a surface of a substrate, introducing a hydrogen containing gas and an oxygen containing gas to the surface of the substrate, and forming a hafnium containing layer over the substrate.
    Type: Application
    Filed: November 21, 2002
    Publication date: December 18, 2003
    Inventors: Shreyas S. Kher, Shixue Han, Craig R. Metzner
  • Publication number: 20030101938
    Abstract: An integrated deposition system is described that is capable of vaporizing low vapor pressure liquid precursors and conveying the vapor to a processing region to fabricate advanced integrated circuits. The integrated deposition system includes a heated exhaust system, a remote plasma generator, a processing chamber, a liquid delivery system, and a computer control module that together create a commercially viable and production worthy system for depositing high capacity dielectric materials from low vapor pressure precursors.
    Type: Application
    Filed: September 20, 2002
    Publication date: June 5, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Bobby M. Ronsse, Craig R. Metzner, Richard Omar Collins
  • Publication number: 20020192370
    Abstract: An integrated deposition system is provided which is capable of vaporizing low vapor pressure liquid precursors and delivering this vapor into a processing region for use in the fabrication of advanced integrated circuits. The integrated deposition system is made up of a heated exhaust system, a remote plasma generator, a processing chamber and a liquid delivery system which together provide a commercially viable and production worthy system for depositing high capacity dielectric materials from low vapor pressure precursors, anneal those films while also providing commercially viable in-situ cleaning capability.
    Type: Application
    Filed: July 12, 2002
    Publication date: December 19, 2002
    Inventors: Craig R. Metzner, Turgut Sahin, Gregory F. Redinbo, Pravin K. Narwankar, Patricia M. Liu