Patents by Inventor Craig R. Schardt
Craig R. Schardt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230350217Abstract: An optical system for displaying a virtual image to a viewer includes stacked integral first reflective polarizer and integral second reflective polarizer, a display, and a mirror.Type: ApplicationFiled: July 12, 2023Publication date: November 2, 2023Inventors: Craig R. Schardt, Adam D. Haag, Stephen J. Willet
-
Patent number: 11740480Abstract: An optical system for displaying a virtual image to a viewer includes stacked integral first reflective polarizer and integral second reflective polarizer, a display, and a mirror.Type: GrantFiled: January 27, 2021Date of Patent: August 29, 2023Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Craig R. Schardt, Adam D. Haag, Stephen J. Willet
-
Publication number: 20230213758Abstract: An optical combiner includes a first layer with a periodic arrangement of structures of a material with a first refractive index. A second layer overlies the structures on the first layer, and the second layer includes a material with a second refractive index. A difference between the first refractive index and the second refractive index, measured at 587.5 nm, is less than 1.5. The periodic arrangement of structures is configured such that the optical combiner produces, for an input signal incident on the first layer from air at an oblique elevation angle of greater than 20°, an output signal with three reflection peaks, each reflection peak having an average reflection of greater than 50% within a ±3° range of the elevation angle.Type: ApplicationFiled: December 9, 2022Publication date: July 6, 2023Inventors: Karl K. Stensvad, Xuexue Guo, Craig R. Schardt, Bing Hao, Andrea Alu, Michele Cotrufo, Matthew M. Markowitz
-
Publication number: 20230213757Abstract: An optical combiner includes a first layer with a periodic two-dimensional arrangement of structures arranged to support resonance for an input signal of a target wavelength, wherein the structures have a first refractive index. A second layer overlies the structures on the first layer, wherein the second layer includes a second material with a second refractive index, and wherein a difference between the first refractive index and the second refractive index, measured at 587.5 nm, is less than about 1.5. The periodic arrangement of structures is configured such that the optical combiner produces, for the input signal incident on the first layer from air at an oblique elevation angle of greater than about 20°, an output signal with a reflection peak with an average reflection of greater than about 50% within a ± 5° range of the elevation angle.Type: ApplicationFiled: December 9, 2022Publication date: July 6, 2023Inventors: Karl K. Stensvad, Xuexue Guo, Craig R. Schardt, Bing Hao, Andrea Alu, Michele Cotrufo, Adam Overvig
-
Publication number: 20230085544Abstract: An optical system for displaying a virtual image to a viewer includes stacked integral first reflective polarizer and integral second reflective polarizer, a display, and a mirror.Type: ApplicationFiled: January 27, 2021Publication date: March 16, 2023Inventors: Craig R. Schardt, Adam D. Haag, Stephen J. Willet
-
Publication number: 20220197024Abstract: An optical system includes a reflective polarizer (20), and a display (10), first mirror (30a), and second mirror (30b) disposed on a same side of the reflective polarizer (20). The reflective polarizer (20) transmits an image emitted by the display (10) after the image is reflected by the first and second mirrors (30a, 30b). A mid-plane defined by intersection points between an optical axis of the system and the display (10), reflective polarizer (20), and second mirror (30b) has one-pass through four-pass regions having respective areas, A1 through A4.Type: ApplicationFiled: June 6, 2019Publication date: June 23, 2022Inventors: Zhisheng Yun, Stephen J. Willett, Craig R. Schardt, Gilles J. Benoit, Keith M. Kotchick, Ryan C. Shirk, David A. Rosen, Hao Wu
-
Publication number: 20220057632Abstract: An optical system, including a reflective polarizer, and a display and a mirror disposed on a same side of, and generally facing, the reflective polarizer. The reflective polarizer may transmit at least 80% of incident light having a first polarization state and may reflect at least 80% of incident light having a second polarization state, and the mirror may reflect at least 80% of the incident light for each of the first and second polarization states. The central locations of the display, reflective polarizer, and mirror may define a midplane which includes first, second, and third regions, such that the first region includes portions of the image rays that pass at least once across the region, the second region includes portions of the image rays that pass at least twice across the region, and the third region includes portions of the image rays that pass three times across the region.Type: ApplicationFiled: December 17, 2019Publication date: February 24, 2022Inventors: Zhisheng Yun, Hao Wu, Stephen J. Willett, Craig R. Schardt, Stephan J. Pankratz, Gilles J. Benoit
-
Patent number: 11125406Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: January 23, 2020Date of Patent: September 21, 2021Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 11040721Abstract: Methods for management of a powertrain system in a vehicle. The methods receive data or signals from multiple sensors associated with the vehicle. Optimum thresholds for classifications of the sensor data can be changed based injecting signals into the powertrain system and receiving responsive signals. Expected priorities for the sensor signals can be altered based upon attributes of the signals and confirming actual priorities for the signals. Look-up tables for engine management can be modified based upon injecting signals into the powertrain system and measuring a utility of the responsive signals. The methods can thus dynamically alter and modify data for powertrain management, such as look-up tables, during vehicle operation under a wide range of conditions.Type: GrantFiled: November 27, 2018Date of Patent: June 22, 2021Assignee: 3M Innovative Properties CompanyInventors: Gilles J. Benoit, Brian E. Brooks, Ryan C. Shirk, Michael E. Nelson, Craig R. Schardt
-
Patent number: 10988979Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: August 28, 2020Date of Patent: April 27, 2021Assignee: 3M Innovative Properties CompanyInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Publication number: 20210070313Abstract: Methods for management of a powertrain system in a vehicle. The methods receive data or signals from multiple sensors associated with the vehicle. Optimum thresholds for classifications of the sensor data can be changed based injecting signals into the powertrain system and receiving responsive signals. Expected priorities for the sensor signals can be altered based upon attributes of the signals and confirming actual priorities for the signals. Look-up tables for engine management can be modified based upon injecting signals into the powertrain system and measuring a utility of the responsive signals. The methods can thus dynamically alter and modify data for powertrain management, such as look-up tables, during vehicle operation under a wide range of conditions.Type: ApplicationFiled: November 27, 2018Publication date: March 11, 2021Inventors: Gilles J. Benoit, Brian E. Brooks, Ryan C. Shirk, Michael E. Nelson, Craig R. Schardt
-
Publication number: 20200392782Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: August 28, 2020Publication date: December 17, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10823717Abstract: A system for use in wirelessly monitoring a pipeline such as a natural gas pipe. The system includes a locator configured to wirelessly transmit power and a subsoil sensor marker located adjacent the pipe and configured to wirelessly communicate with the locator. The sensor marker includes a microcontroller, a memory module, a sensor configured to sense the presence of a gas, and a power module. The power module is configured to harvest a sufficient amount of the power wirelessly transmitted from the locator in order to operate the microcontroller to take a measurement via the sensor, save the measurement in the memory module, and wirelessly transmit the measurement to the locator.Type: GrantFiled: September 1, 2017Date of Patent: November 3, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Stephen J. Willett, Ronald D. Jesme, Mohsen Salehi, Andrew P. Bonifas, Erik A. Aho, Craig R. Schardt, Amy J. Hite, Patrick M. Campbell
-
Patent number: 10794114Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: November 14, 2019Date of Patent: October 6, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10720698Abstract: A system having a concealed communications element like a telecommunication antenna is described. More specifically, The system has a communications element that is concealed by a highly reflective multilayer polymer optical film 200. The first element of the multilayer polymer optical film is a core layer 202 that is made up of a multilayer optical stack. The multilayer optical stack of core layer 202 includes two alternating polymeric layers. The multilayer polymer optical film may optionally also include a protective layer 204 (for example, a hardcoat or an over laminate) that is positioned between the viewer and the core layer. The protective layer 204 may include one or more UV absorbers to aid in durability of the multilayer polymer optical film against UV-degradation. Multilayer polymer optical film 200 may optionally also include an adhesive layer 208 that is positioned between the core layer 202 and a surface onto which the multilayer polymer optical film is to be adhered.Type: GrantFiled: December 9, 2015Date of Patent: July 21, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Donald K. Larson, Craig R. Schardt, Stephen C. King, Daniel J. Treadwell, Constand E. Yemelong, Joseph C. Carls, Cary A. Kipke
-
Patent number: 10670873Abstract: Projection subsystems are described. More, particularly, projection subsystems that include a light source and a polarizing beam splitter are described. The polarizing beam splitters of the presently described projection subsystems are capable of avoiding performance degradation even after exposure to large doses of incident light.Type: GrantFiled: March 19, 2018Date of Patent: June 2, 2020Assignee: 3M Innovative Properties CompanyInventors: Stephen J. Willett, Craig R. Schardt, David J. W. Aastuen
-
Publication number: 20200157878Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: January 23, 2020Publication date: May 21, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Publication number: 20200087981Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: November 14, 2019Publication date: March 19, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10590697Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: January 22, 2015Date of Patent: March 17, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10521053Abstract: A composite article having a conductive layer on at least a portion of a flexible substrate. Electrical connectivity between various portions of the substrate can be obtained through this conductive layer. The conductive layer comprises a conductive surface, and there is a patterned layer on at least a portion of a first region of the conductive surface. The patterned layer comprises a conductive material having a surface roughness, and is in electrical contact with the conductive surface. An overcoat layer is present on at least a portion of the first region, such that the overcoat layer has a thickness less than the surface roughness, such that the conductive layer within the first region is covered by the overcoat layer, and such that at least a portion of the patterned layer substantially protrudes above the overcoat layer.Type: GrantFiled: September 12, 2016Date of Patent: December 31, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Matthew S. Stay, Shawn C. Dodds, Luke A. Schroeder, Joan M. Noyola, Nicholas D. Petkovich, Matthew H. Frey, Craig R. Schardt, Mikhail L. Pekurovsky, Ann M. Gilman