Patents by Inventor Cristian Lorenz

Cristian Lorenz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931201
    Abstract: The invention provides a method for making anatomical measurements using a captured ultrasound image representative of the anatomical region of interest. The method comprises receiving (20) data representative of a set of points selected by a user within the image and interpreting from the points a particular anatomical measurement type which the user is intending to perform. In particular, the points are processed to identify (24) a pattern or other geometrical characteristic of the points, and the location (22) of at least one of the points within the image is also identified. These two characteristics are used to identify from the set of points which measurement the operator is performing. Once the measurement is identified, an appropriate measurement template (26) is selected and applied in order to derive (30) from the set of points an anatomical measurement.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: March 19, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Nicole Schadewaldt, Cristian Lorenz, Alexander Schmidt-Richberg, Tobias Klinder
  • Patent number: 11883231
    Abstract: A system for generating ultrasound data in respect of an anatomical body being scanned makes use of a predetermined scan protocol, which specifies a sequence of types of ultrasound scan of structures of interest. These types may for example be different imaging modalities (static, dynamic, 2D, 3D etc.) which are most appropriate for viewing different structures within the anatomical body. From received ultrasound images, a model is used to identify the structures of interest within the ultrasound images. The best images for creating the types of scan of the protocol are then identified and a sequence is compiled of those best images. In this way, a sequence is created which combines different types of scan, in a structured way according to a predetermined protocol. This makes the analysis of the sequence most intuitive for a user, and simplifies comparison between different sequences.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: January 30, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Nicole Schadewaldt, Cristian Lorenz, Alexander Schmidt-Richberg, Tobias Klinder
  • Publication number: 20240005484
    Abstract: A system and related method for image processing. The system comprises an input (IN) interface for receiving two segmentation maps for an input image. The two segmentation maps (11,12) obtained by respective segmentors, a first segmentor (SEG1) and a second segmentor (SEG2). The first segmentor (SEG1) implements a shape-prior-based segmentation algorithm. The second segmentor (SEG2) implements a segmentation algorithm that is not based on a shape-prior, or at least the second segmentor (SEG2) accounts for one or more shape priors at a lower weight as compared to the first segmentor (SEG1). A differentiator (DIF) configured to ascertain a difference between the two segmentation maps. The system may allow detection of abnormalities.
    Type: Application
    Filed: October 9, 2021
    Publication date: January 4, 2024
    Inventors: CHRISTIAN BUERGER, JENS VON BERG, MATTHIAS LENGA, CRISTIAN LORENZ
  • Publication number: 20230054610
    Abstract: An ultrasound imaging system includes a processor circuit in communication with an ultrasound transducer configured to receive three-dimensional ultrasound data of an anatomy, and generate a target image corresponding to a target image plane of the anatomy, and a plurality of adjacent images corresponding to image planes adjacent to the target image plane along a simulated motion path. The processor circuit is further configured to display the target image, receive a user input representative of a direction of motion along the simulated motion path, and display an adjacent image of the plurality of adjacent images corresponding to the direction of motion. Accordingly, the user can observe the target image in its spatial context by scanning through the target image and one or more adjacent images on the display as if the ultrasound transducer were being scanned along the simulated motion path.
    Type: Application
    Filed: February 22, 2021
    Publication date: February 23, 2023
    Inventors: David Nigel Roundhill, Tobias Klinder, Alexander Schmidt-Richberg, Matthias Lenga, Eliza Teodora Orasanu, Cristian Lorenz
  • Publication number: 20230038965
    Abstract: Presented are concepts for initialising a model for model-based segmentation of an image which use specific landmarks (e.g. detected using other techniques) to initialize the segmentation mesh. Using such an approach, embodiments need not be limited to predefined model transformations, but can initialise a segmentation mesh with arbitrary shape. In this way, embodiments may provide for an image segmentation algorithm that not only delivers a robust surface-based segmentation result but also does so for strongly varying target structure variations (in terms of shape).
    Type: Application
    Filed: February 11, 2021
    Publication date: February 9, 2023
    Inventors: CHRISTIAN BUERGER, TOBIAS KLINDER, JENS VON BERG, ASTRID RUTH FRANZ, MATTHIAS LENGA, CRISTIAN LORENZ
  • Publication number: 20220344034
    Abstract: A system for recording ultrasound images comprises a memory comprising instruction data representing a set of instructions and a processor configured to communicate with the memory and to execute the set of instructions. The set of instructions, when executed by the processor, cause the processor to receive a data stream of two dimensional images taken using an ultrasound transducer and determine from the data stream that a feature of interest is in view of the transducer. The set of instructions further cause the processor to trigger an alert to be sent to a user to indicate that the feature of interest is in view of the transducer, and send an instruction to the transducer to trigger the transducer to capture a three dimensional ultrasound image after a predetermined time interval.
    Type: Application
    Filed: September 25, 2020
    Publication date: October 27, 2022
    Inventors: David Nigel Roundhill, Tobias Klinder, Alexander Schmidt-Richberg, Matthias Lenga, Eliza Teodora Orasanu, Cristian Lorenz
  • Patent number: 11432736
    Abstract: The invention provides for a medical imaging system (700) comprising: a memory (734) for storing machine executable instructions (740), a display (732) for rendering a user interface (800), and a processor (730). Execution of the machine executable instructions causes the processor to receive (1000) three dimensional medical image data (746) descriptive of a region of interest (709) of a subject (718). The region of interest comprises a spine (200). Execution of the machine executable instructions further causes the processor to receive (1002) a set of spinal coordinate systems (748) each descriptive of a location and an orientation of spinal vertebrae in the three dimensional medical image data. The set of spinal coordinate systems further comprises a set of spine centerline positions (102) each positioned on a spine centerline (108).
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: September 6, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Cristian Lorenz, Peter Bornert, Tobias Klinder
  • Patent number: 11413006
    Abstract: The present invention provides an improved ultrasound imaging system arranged to evaluate a set of acquired 3D image data in order to provide a compounded 3D image of a fetus irrespective of its position and movement.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: August 16, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tobias Klinder, Cristian Lorenz, Irina Waechter-Stehle
  • Patent number: 11337677
    Abstract: An ultrasound image processing apparatus (200) is disclosed for obtaining a biometric measurement of an anatomical feature of interest from a 3D ultrasound image.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 24, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Emmanuel Mocé Serge Attia, Cristian Lorenz, David Nigel Roundhill, Alasdair Dow, Benoit Jean-Dominique Bertrand Maurice Mory
  • Patent number: 11246564
    Abstract: The present invention relates to an ultrasound diagnosis apparatus (10), in particular for analyzing a fetus (62). An ultrasound data interface (66) is configured to receive 3D (three dimensional) ultrasound data from an object (12). The ultrasound diagnosis apparatus further comprises a measurement unit (70) for measuring anatomical structures of the object based on the segmentation data and a calculation unit (72) configured to calculate at least one biometric parameter based on the 3D ultrasound data.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: February 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cristian Lorenz, Tobias Klinder, Irina Waechter-Stehle
  • Publication number: 20210338203
    Abstract: The invention provides a method for guiding the acquisition of an ultrasound image. A 3D ultrasound image is acquired by an ultrasound probe at a first position and an anatomical structure is identified within the 3D ultrasound image. A target imaging plane is estimated based on the identified anatomical structure and it is determined whether the target imaging plane is present within the 3D ultrasound image. If the target imaging plane is present, a displacement between a central plane of the 3D ultrasound image and the target plane is determined. If the displacement is below a predetermined threshold, the target imaging plane is extracted and if the displacement is above the predetermined threshold, an instruction to acquire a 3D ultrasound image with the ultrasound probe at a second position, different from the first position, is generated based on the displacement. The invention further provides a method for estimating a target imaging plane.
    Type: Application
    Filed: October 14, 2019
    Publication date: November 4, 2021
    Inventors: Laurence ROUET, Cybèle CIOFOLO-VEIT, Thierry LEFEVRE, Caroline Denise Francoise RAYNAUD, Cristian LORENZ, Tobias KLINDER, Nicole SCHADEWALDT, Alexander SCHMIDT-RICHBERG
  • Publication number: 20210244376
    Abstract: An apparatus including a memory (128), a display (122), and a processor (126). The memory is configured to store a protocol definition module (132). The processor is configured to execute the protocol definition module, which causes the processor to display, via the display, an interactive graphical tool (202) that includes a digital representation of an anatomical model with an interactively generated scan field of view superimposed thereover to create a standard scan protocol for execution by an imaging system, wherein the scan field of view identifies anatomy of the subject to scan for the scan protocol.
    Type: Application
    Filed: May 30, 2019
    Publication date: August 12, 2021
    Inventors: Thomas Buelow, Cristian Lorenz
  • Publication number: 20210161508
    Abstract: A system for generating ultrasound data in respect of an anatomical body being scanned makes use of a predetermined scan protocol, which specifies a sequence of types of ultrasound scan of structures of interest. These types may for example be different imaging modalities (static, dynamic, 2D, 3D etc.) which are most appropriate for viewing different structures within the anatomical body. From received ultrasound images, a model is used to identify the structures of interest within the ultrasound images. The best images for creating the types of scan of the protocol are then identified and a sequence is compiled of those best images. In this way, a sequence is created which combines different types of scan, in a structured way according to a predetermined protocol. This makes the analysis of the sequence most intuitive for a user, and simplifies comparison between different sequences.
    Type: Application
    Filed: March 28, 2019
    Publication date: June 3, 2021
    Inventors: Nicole Schadewaldt, Cristian Lorenz, Alexander Schmidt-Richberg, Tobias Klinder
  • Publication number: 20210077062
    Abstract: The invention provides a method for making anatomical measurements using a captured ultrasound image representative of the anatomical region of interest. The method comprises receiving (20) data representative of a set of points selected by a user within the image and interpreting from the points a particular anatomical measurement type which the user is intending to perform. In particular, the points are processed to identify (24) a pattern or other geometrical characteristic of the points, and the location (22) of at least one of the points within the image is also identified. These two characteristics are used to identify from the set of points which measurement the operator is performing. Once the measurement is identified, an appropriate measurement template (26) is selected and applied in order to derive (30) from the set of points an anatomical measurement.
    Type: Application
    Filed: January 9, 2019
    Publication date: March 18, 2021
    Inventors: NICOLE SCHADEWALDT, CRISTIAN LORENZ, ALEXANDER SCHMIDT-RICHBERG, TOBIAS KLINDER
  • Publication number: 20210082108
    Abstract: The invention relates to an image processing device (10) comprising a data input (11) for receiving a 3D diagnostic image and a segmentation unit (12) for segmenting a thoracic cavity, a pelvic cavity, an abdominopelvic cavity or a combination of a thoracic cavity and an abdominopelvic cavity in the 3D diagnostic image and for determining a boundary surface thereof. The device also comprise a surface texture processor (13) for determining a surface texture for the boundary surface by projecting image information from a local neighborhood of the boundary surface in the 3D diagnostic image onto the boundary surface. The device comprises an output (14) for outputting a visual representation of at least one flat anatomical structure, comprising one or more ribs, a sternum, one or more vertebrae and/or a pelvic bone complex, adjacent to the body cavity by applying and visualizing the surface texture on the boundary surface.
    Type: Application
    Filed: August 31, 2018
    Publication date: March 18, 2021
    Inventors: CHRISTIAN BUERGER, TOBIAS KLINDER, JENS VON BERG, CRISTIAN LORENZ
  • Patent number: 10902606
    Abstract: A system (100) for segmenting a coronary artery vessel tree (182) of a patient heart in a three dimensional (3D) cardiac image (120) includes a coronary volume definition unit (150) and a coronary artery segmentation unit (180). The coronary volume definition unit (150) sets a spatial boundary (210, 220) from internal and external surfaces of heart tissues in the 3D cardiac image based on a fitted heart model (200). The coronary artery segmentation unit (180) segments the coronary artery vessel tree (182) in the 3D cardiac image using a segmentation algorithm with a search space limited by the spatial boundary set from the internal and external surfaces of the heart tissues.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: January 26, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cristian Lorenz, Tobias Klinder, Holger Schmitt, Hannes Nickisch
  • Publication number: 20200129153
    Abstract: The present invention relates the device and the method for providing a guidance signal. The device preferably relates to a mobile device, such as a mobile tablet computer. The device comprises an input unit, a display and a processing unit. Via the input unit, a three-dimensional outline image of a surface of a human subject is provided, e.g. acquired by a camera. The device further comprises a memory. The memory stores a human reference model, which statistically represents a virtual human subject. In practice it is often the case that the surface outline represented by the human reference model would not instantly fit to the surface outline of the human subject. Therefore, the processing unit is configured to adapt the human reference model resulting in an adapted model, such that the surface outline represented by the adapted model fits to the surface outline of the (real) human subject.
    Type: Application
    Filed: March 16, 2018
    Publication date: April 30, 2020
    Inventors: Julien Sénégas, Cristian Lorenz, Hans-Aloys Wischmann, Sascha Krueger
  • Publication number: 20200022609
    Abstract: The invention provides for a medical imaging system (700) comprising: a memory (734) for storing machine executable instructions (740), a display (732) for rendering a user interface (800), and a processor (730). Execution of the machine executable instructions causes the processor to receive (1000) three dimensional medical image data (746) descriptive of a region of interest (709) of a subject (718). The region of interest comprises a spine (200). Execution of the machine executable instructions further causes the processor to receive (1002) a set of spinal coordinate systems (748) each descriptive of a location and an orientation of spinal vertebrae in the three dimensional medical image data. The set of spinal coordinate systems further comprises a set of spine centerline positions (102) each positioned on a spine centerline (108).
    Type: Application
    Filed: December 5, 2017
    Publication date: January 23, 2020
    Inventors: CRISTIAN LORENZ, PETER BORNERT, TOBIAS KLINDER
  • Publication number: 20200015785
    Abstract: An ultrasound image processing apparatus (200) is disclosed for obtaining a biometric measurement of an anatomical feature of interest from a 3D ultrasound image.
    Type: Application
    Filed: March 19, 2018
    Publication date: January 16, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Emmanuel Mocé Serge Attia, Cristian Lorenz, David Nigel Roundhill, Alasdair Dow, Benoit Jean-Dominique Bertrand Maurice Mory
  • Patent number: 10515478
    Abstract: A method for processing image data includes obtaining a first set of 3D volumetric image data. The 3D volumetric image data includes a volume of voxels. Each voxel has an intensity. The method further includes obtaining a local voxel noise estimate for each of the voxels of the volume. The method further includes processing the volume of voxels based at least on the intensity of the voxels and the local voxel noise estimates of the voxels. An image data processor (124) includes a computer processor that at least one of: generate a 2D direct volume rendering from first 3D volumetric image data based on voxel intensity and individual local voxel noise estimates of the first 3D volumetric image data, or registers second 3D volumetric image data and first 3D volumetric image data based at least one individual local voxel noise estimates of second and first 3D volumetric image data sets.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: December 24, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rafael Wiemker, Tobias Klinder, Martin Bergtholdt, Cristian Lorenz