Patents by Inventor Czang-Ho Lee

Czang-Ho Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8969713
    Abstract: Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Seok Oh, Jung-Tae Kim, Nam-Kyu Song, Min Park, Yun-Seok Lee, Czang-Ho Lee, Myung-Hun Shin, Byoung-Kyu Lee, Yuk-Hyun Nam, Seung-Jae Jung, Mi-Hwa Lim, Joon-Young Seo, Dong-Uk Choi, Dong-Seop Kim, Byoung-June Kim
  • Patent number: 8802972
    Abstract: Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: August 12, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Seok Oh, Jung-Tae Kim, Nam-Kyu Song, Min Park, Yun-Seok Lee, Czang-Ho Lee, Myung-Hun Shin, Byoung-Kyu Lee, Yuk-Hyun Nam, Seung-Jae Jung, Mi-Hwa Lim, Joon-Young Seo, Dong-Uk Choi, Dong-Seop Kim, Byoung-June Kim
  • Patent number: 8742247
    Abstract: A solar cell module includes a substrate, a lower electrode layer, a semiconductor layer and an upper electrode layer for an embodiment. The lower electrode layer may include a plurality of area-separating grooves separating the substrate into an active area and a peripheral area surrounding the active area, and a plurality of first cell-separating grooves formed in the active area. The semiconductor layer is formed on the lower electrode layer. The semiconductor layer includes a plurality of second cell-separating grooves that are spaced apart from the first cell-separating grooves. The upper electrode layer is formed on the semiconductor layer. The upper electrode layer includes a plurality of third cell-separating grooves that are spaced apart from the second separating grooves.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: June 3, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ku-Hyun Kang, Dong-Jin Kim, Yeon-Il Kang, Czang-Ho Lee, Myung-Hun Shin, Dae-Ha Woo, Byoung-Kyu Lee, Yuk-Hyun Nam, Seung-Jae Jung, Joong-Hyun Park
  • Patent number: 8637948
    Abstract: A photovoltaic device including a semiconductor substrate having a first surface and a second surface, the second surface being opposite to the first surface; a first passivation layer on the first surface; and a second passivation layer on the second surface, wherein each of the first passivation layer and the second passivation layer comprises an aluminum-based compound, is disclosed. A method of preparing a photovoltaic device, the method including: forming a semiconductor substrate to have a first surface and a second surface, the second surface being opposite to the first surface; forming an emitter region and a back surface field (BSF) region at the second surface; and forming a first passivation layer on the first surface and a second passivation layer on the second surface, wherein the first passivation layer and the second passivation layer are formed concurrently, is also disclosed.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: January 28, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-Jong Kim, Czang-Ho Lee, Min Park, Kyoung-Jin Seo, Sang-Won Lee, Jun-Ki Hong, Byoung-Gook Jeong
  • Publication number: 20130175648
    Abstract: A photovoltaic device including a semiconductor substrate having a first surface and a second surface, the second surface being opposite to the first surface; a first passivation layer on the first surface; and a second passivation layer on the second surface, wherein each of the first passivation layer and the second passivation layer comprises an aluminum-based compound, is disclosed. A method of preparing a photovoltaic device, the method including: forming a semiconductor substrate to have a first surface and a second surface, the second surface being opposite to the first surface; forming an emitter region and a back surface field (BSF) region at the second surface; and forming a first passivation layer on the first surface and a second passivation layer on the second surface, wherein the first passivation layer and the second passivation layer are formed concurrently, is also disclosed.
    Type: Application
    Filed: July 18, 2012
    Publication date: July 11, 2013
    Inventors: Hyun-Jong Kim, Czang-Ho Lee, Min Park, Kyoung-Jin Seo, Sang-Won Lee, Jun-Ki Hong, Byoung-Gook Jeong
  • Publication number: 20130146136
    Abstract: A photovoltaic device and a method of manufacturing the same, the device including a semiconductor substrate having a first surface and a second surface opposite to the first surface; a silicon nitride gap insulation layer on the first surface of the semiconductor substrate, a portion of the gap insulation layer proximate to the semiconductor substrate having a silicon:nitrogen ratio different from a silicon:nitrogen ratio in a portion of the gap insulation layer distal to the semiconductor substrate; a semiconductor structure on the first surface of the semiconductor substrate; and an electrode on the semiconductor structure.
    Type: Application
    Filed: August 16, 2012
    Publication date: June 13, 2013
    Inventors: Kyoung-Jin SEO, Jeong-Byong GOOK, Hyun-Jong KIM, Min PARK, Czang-Ho LEE, Sang-Won LEE
  • Publication number: 20130112252
    Abstract: A solar cell including a first conductive type semiconductor substrate; a first conductive type first semiconductor layer on a back surface of the semiconductor substrate; a second conductive type second semiconductor layer on the back surface of the semiconductor substrate at a height different from the first semiconductor layer, the second semiconductor layer being separated from the first semiconductor layer; and a passivation layer on the back surface of the semiconductor substrate. The passivation layer covers at least a portion of the first semiconductor layer and at least a portion of the second semiconductor layer. The passivation layer includes impurities.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 9, 2013
    Inventors: Kyoung-Jin Seo, Czang-Ho Lee, Hyun-Jong Kim, Min Park, Jun-Ki Hong, Byong-Gook Jeong
  • Patent number: 8409916
    Abstract: A thin film transistor substrate includes an insulating plate; a gate electrode disposed on the insulating plate; a semiconductor layer comprising a metal oxide, wherein the metal oxide has oxygen defects of less than or equal to 3%, and wherein the metal oxide comprises about 0.01 mole/cm3 to about 0.3 mole/cm3 of a 3d transition metal; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and a source electrode and a drain electrode disposed on the semiconductor layer. Also described is a display substrate. The metal oxide has oxygen defects of less than or equal to 3%, and is doped with about 0.01 mole/cm3 to about 0.3 mole/cm3 of 3d transition metal. The metal oxide comprises indium oxide or titanium oxide. The 3d transition metal includes at least one 3d transition metal selected from the group consisting of chromium, cobalt, nickel, iron, manganese, and mixtures thereof.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 2, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kap-Soo Yoon, Sung-Hoon Yang, Byoung-June Kim, Czang-Ho Lee, Sung-Ryul Kim, Hwa-Yeul Oh, Jae-Ho Choi, Yong-Mo Choi
  • Publication number: 20130045564
    Abstract: A photovoltaic device and a manufacturing method thereof are provided. The photovoltaic device includes: a substrate; a first conductive layer formed on the substrate; P layers and N layers alternately formed along a first direction on the first conductive layer; and I layers covering the P layers and the N layers on the first conductive layer, wherein the P layers and the N layers are separated from each other by a first interval, the I layers are formed between the P layers and the N layers that are separated by the first interval, and the P layers, the I layers, and the N layers formed along the first direction form unit cells.
    Type: Application
    Filed: October 19, 2012
    Publication date: February 21, 2013
    Inventors: Min PARK, Min-Seok OH, Jung-Tae KIM, Czang-Ho LEE, Myung-Hun SHIN, Byoung-Kyu LEE, Ku-Hyun KANG, Yuk-Hyun NAM, Seung-Jae JUNG, Mi-Hwa LIM, Joon-Young SEO
  • Publication number: 20130037086
    Abstract: A photovoltaic device and a manufacturing method thereof are provided. The photovoltaic device includes: a substrate; a first conductive layer formed on the substrate; P layers and N layers alternately formed along a first direction on the first conductive layer; and I layers covering the P layers and the N layers on the first conductive layer, wherein the P layers and the N layers are separated from each other by a first interval, the I layers are formed between the P layers and the N layers that are separated by the first interval, and the P layers, the I layers, and the N layers formed along the first direction form unit cells.
    Type: Application
    Filed: October 18, 2012
    Publication date: February 14, 2013
    Inventors: Min PARK, Min-Seok OH, Jung-Tae KIM, Czang-Ho LEE, Myung-Hun SHIN, Byoung-Kyu LEE, Ku-Hyun KANG, Yuk-Hyun NAM, Seung-Jae JUNG, Mi-Hwa LIM, Joon-Young SEO
  • Patent number: 8354585
    Abstract: A solar cell includes: a semiconductor substrate having a first surface and a second surface opposite the first surface; uneven patterns disposed on at least one of the first surface and the second surface of the semiconductor substrate; a first impurity layer disposed on the uneven patterns and which includes a first part having a first doping concentration and a second part having a second doping concentration greater than the first doping concentration; and a first electrode which contacts the second part of the first impurity layer and does not contact the first part of the first impurity layer.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: January 15, 2013
    Assignees: Samsung SDI Co., Ltd., Samsung Display Co., Ltd.
    Inventors: Min-Seok Oh, Byoung-Kyu Lee, Min Park, Czang-Ho Lee, Myung-Hun Shin, Yuk-Hyun Nam, Seung-Jae Jung, Mi-Hwa Lim, Joon-Young Seo
  • Patent number: 8329500
    Abstract: Provided is a method of manufacturing a photovoltaic device using a Joule heating-induced crystallization method. The method includes: forming a first conductive pattern on a substrate; forming a photoelectric conversion layer on the substrate having the first conductive pattern; and crystallizing at least part of the photoelectric conversion layer by applying an electric field to the photoelectric conversion layer, wherein the photoelectric conversion layer includes a first amorphous semiconductor layer containing first impurities, a second intrinsic, amorphous semiconductor layer, and a third amorphous semiconductor layer containing second impurities.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: December 11, 2012
    Assignees: Samsung Display Co., Ltd., Samsung SDI Co., Ltd.
    Inventors: Byoung-Kyu Lee, Se-Jin Chung, Byoung-June Kim, Czang-Ho Lee, Myung-Hun Shin, Min-Seok Oh, Ku-Hyun Kang, Yuk-Hyun Nam, Seung-Jae Jung, Min Park, Mi-Hwa Lim, Joon-Young Seo
  • Patent number: 8294021
    Abstract: A photovoltaic device and a manufacturing method thereof are provided. The photovoltaic device includes: a substrate; a first conductive layer formed on the substrate; P layers and N layers alternately formed along a first direction on the first conductive layer; and I layers covering the P layers and the N layers on the first conductive layer, wherein the P layers and the N layers are separated from each other by a first interval, the I layers are formed between the P layers and the N layers that are separated by the first interval, and the P layers, the I layers, and the N layers formed along the first direction form unit cells.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: October 23, 2012
    Assignees: Samsung Electronics Co., Ltd., Samsung SDI Co., Ltd.
    Inventors: Min Park, Min-Seok Oh, Jung-Tae Kim, Czang-Ho Lee, Myung-Hun Shin, Byoung-Kyu Lee, Ku-Hyun Kang, Yuk-Hyun Nam, Seung-Jae Jung, Mi-Hwa Lim, Joon-Young Seo
  • Publication number: 20120181503
    Abstract: Disclosed are a method of fabricating a silicon quantum dot layer and a device manufactured using the same. A first capping layer is formed on a substrate, and a silicon-containing precursor layer is formed on the first capping layer. A second capping layer is formed on the silicon-containing precursor layer. The first capping layer, the silicon-containing precursor layer, and the second capping layer are irradiated to convert the silicon-containing precursor layer into a stack including a first poly-crystalline silicon layer, a silicon quantum dot layer on the first poly-crystalline silicon layer, and a second poly-crystalline silicon layer on the silicon quantum dot layer.
    Type: Application
    Filed: September 19, 2011
    Publication date: July 19, 2012
    Inventors: Czang-Ho Lee, Joon-Young Seo, Dong-Jin Kim
  • Publication number: 20120129295
    Abstract: Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 24, 2012
    Applicants: SAMSUNG SDI CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Min-Seok OH, Jung-Tae Kim, Nam-Kyu Song, Min Park, Yun-Seok Lee, Czang-Ho Lee, Myung-Hun Shin, Byoung-Kyu Lee, Yuk-Hyun Nam, Seung-Jae Jung, Mi-Hwa Lim, Joon-Young Seo, Dong-Uk Choi, Dong-Seop Kim, Byoung-June Kim
  • Publication number: 20120122262
    Abstract: A thin film solar cell module includes a front substrate; a plurality of thin film solar cells disposed on the front substrate; a rear substrate disposed on the thin film solar cells; a plurality of inter-connection terminals electrically connected to the thin film solar cells, respectively, and exposed to an exterior surface of at least one of the front and rear substrates; and a connector electrically connecting the inter-connection terminals in a series or parallel configuration.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 17, 2012
    Inventors: Yeon-Il Kang, Jin-Seock Kim, Czang-Ho Lee, Hee-Chan Lee, Ku-Hyun Kang
  • Publication number: 20120112542
    Abstract: A method of electrically eliminating defective solar cell units that are disposed within an integrated solar cells module and a method of trimming an output voltage of the integrated solar cells module are provided, where the solar cells module has a large number (e.g., 50 or more) of solar cell units integrally disposed therein and initially connected in series one to the next. The method includes providing a corresponding plurality of repair pads, each integrally extending from a respective electrode layer of the solar cell units, and providing a bypass conductor integrated within the module and extending adjacent to the repair pads. Pad-to-pad spacings and pad-to-bypass spacings are such that pad-to-pad connecting bridges may be selectively created between adjacent ones of the repair pads and such that pad-to-bypass connecting bridges may be selectively created between the repair pads and the adjacently extending bypass conductor.
    Type: Application
    Filed: January 20, 2012
    Publication date: May 10, 2012
    Applicants: SAMSUNG SDI CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Myung-Hun SHIN, Dong-Uk Choi, Byoung-June Kim, Jin-Seock Kim, Czang-Ho Lee, Seung-Jae Jung, Joon-Young Seo
  • Publication number: 20120048358
    Abstract: Provided are a solar cell and a method for manufacturing the same. A solar cell according to an exemplary embodiment of the present invention includes: a substrate; a first electrode disposed on the substrate and including a first groove; a first semiconductor layer disposed on the first electrode; a second semiconductor layer disposed on the first semiconductor layer; and a second electrode disposed on the second semiconductor layer. The first semiconductor layer and the second semiconductor layer have a second groove extending therethrough, the second electrode extends into the second groove, and a third groove is formed in the second electrode and positioned within the second groove.
    Type: Application
    Filed: May 17, 2011
    Publication date: March 1, 2012
    Inventors: Dong-Jin KIM, Bo-Hwan PARK, Czang-Ho LEE, Joon-Young SEO
  • Publication number: 20120003769
    Abstract: A thin film transistor substrate includes an insulating plate; a gate electrode disposed on the insulating plate; a semiconductor layer comprising a metal oxide, wherein the metal oxide has oxygen defects of less than or equal to 3%, and wherein the metal oxide comprises about 0.01 mole/cm3 to about 0.3 mole/cm3 of a 3d transition metal; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and a source electrode and a drain electrode disposed on the semiconductor layer. Also described is a display substrate. The metal oxide has oxygen defects of less than or equal to 3%, and is doped with about 0.01 mole/cm3 to about 0.3 mole/cm3 of 3d transition metal. The metal oxide comprises indium oxide or titanium oxide. The 3d transition metal includes at least one 3d transition metal selected from the group consisting of chromium, cobalt, nickel, iron, manganese, and mixtures thereof.
    Type: Application
    Filed: September 15, 2011
    Publication date: January 5, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kap-Soo YOON, Sung-Hoon YANG, Byoung-June KIM, Czang-Ho LEE, Sung-Ryul KIM, Hwa-Yeul OH, Jae-Ho CHOI, Yong-Mo CHOI
  • Patent number: 8035100
    Abstract: A thin film transistor substrate includes an insulating plate; a gate electrode disposed on the insulating plate; a semiconductor layer comprising a metal oxide, wherein the metal oxide has oxygen defects of less than or equal to 3%, and wherein the metal oxide comprises about 0.01 mole/cm3 to about 0.3 mole/cm3 of a 3d transition metal; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and a source electrode and a drain electrode disposed on the semiconductor layer. Also described is a display substrate. The metal oxide has oxygen defects of less than or equal to 3%, and is doped with about 0.01 mole/cm3 to about 0.3 mole/cm3 of 3d transition metal. The metal oxide comprises indium oxide or titanium oxide. The 3d transition metal includes at least one 3d transition metal selected from the group consisting of chromium, cobalt, nickel, iron, manganese, and mixtures thereof.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: October 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kap-Soo Yoon, Sung-Hoon Yang, Byoung-June Kim, Czang-Ho Lee, Sung-Ryul Kim, Hwa-Yeul Oh, Jae-Ho Choi, Yong-Mo Choi