Patents by Inventor D. Morgan Tench

D. Morgan Tench has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9593931
    Abstract: The thickness of a palladium coating on copper (or another substrate) is measured by passing a cathodic current through a predetermined area of the coating in contact with an electrolytic solution and measuring the potential as a function of time. Protons from the electrolytic solution are electrochemically reduced to palladium hydride at cathodic potentials less negative than required for evolution of hydrogen. As formation of the PdH0.58 beta-phase throughout the Pd coating is completed, the cathodic potential increases rapidly to a cathodic potential plateau corresponding to evolution of hydrogen gas on the PdH0.58 surface. This step in the cathodic potential provides an endpoint time for the measurement. The absolute thickness of the Pd coating is calculated from the integrated cathodic charge passed up to the endpoint time and the predetermined area of the coating in contact with the electrolytic solution.
    Type: Grant
    Filed: September 1, 2013
    Date of Patent: March 14, 2017
    Assignee: ECI Technology, Inc.
    Inventors: D. Morgan Tench, Michael Pavlov, Eugene Shalyt, Peter Bratin, Vladimir Dozortsev
  • Publication number: 20140061064
    Abstract: The thickness of a palladium coating on copper (or another substrate) is measured by passing a cathodic current through a predetermined area of the coating in contact with an electrolytic solution and measuring the potential as a function of time. Protons from the electrolytic solution are electrochemically reduced to palladium hydride at cathodic potentials less negative than required for evolution of hydrogen. As formation of the PdH0.58 beta-phase throughout the Pd coating is completed, the cathodic potential increases rapidly to a cathodic potential plateau corresponding to evolution of hydrogen gas on the PdH0.58 surface. This step in the cathodic potential provides an endpoint time for the measurement. The absolute thickness of the Pd coating is calculated from the integrated cathodic charge passed up to the endpoint time and the predetermined area of the coating in contact with the electrolytic solution.
    Type: Application
    Filed: September 1, 2013
    Publication date: March 6, 2014
    Applicant: ECI Technology, Inc.
    Inventors: D. Morgan Tench, Michael Pavlov, Eugene Shalyt, Peter Bratin, Vladimir Dozortsev
  • Patent number: 8153062
    Abstract: Electrochemical devices, methods, and systems for detecting and quantifying analytes are disclosed. A chemical detection reagent is locally generated in a test solution by electrochemical reaction of a precursor compound caused to migrate into the test solution from a precursor solution separated from the test solution by a cell separator. This approach provides precise metering of the reagent, via the charge passed, and avoids the need to store a reagent solution that may be chemically unstable. In one embodiment, the starch concentration in a colloidal solution can be measured via spectroscopic detection of a blue complex formed by the interaction of starch with iodine produced, on demand, by electrochemical oxidation of iodide ion. The approach may also be used to characterize certain types of analytes. The invention is amenable to automation and is particularly useful for on-line monitoring of production processes, including the inclusion of feed back loop mechanisms for process control.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 10, 2012
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Martin W. Kendig, Chuan-Hua Chen, D. Morgan Tench, Jeffrey F. DeNatale, Frederick M. Discenzo
  • Publication number: 20080241932
    Abstract: Electrochemical devices, methods, and systems for detecting and quantifying analytes are disclosed. A chemical detection reagent is locally generated in a test solution by electrochemical reaction of a precursor compound caused to migrate into the test solution from a precursor solution separated from the test solution by a cell separator. This approach provides precise metering of the reagent, via the charge passed, and avoids the need to store a reagent solution that may be chemically unstable. In one embodiment, the starch concentration in a colloidal solution can be measured via spectroscopic detection of a blue complex formed by the interaction of starch with iodine produced, on demand, by electrochemical oxidation of iodide ion. The approach may also be used to characterize certain types of analytes. The invention is amenable to automation and is particularly useful for on-line monitoring of production processes, including the inclusion of feed back loop mechanisms for process control.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Martin W. Kendig, Chuan-Hua Chen, D. Morgan Tench, Jeffrey F. DeNatale, Frederick M. Discenzo
  • Patent number: 7317566
    Abstract: Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: January 8, 2008
    Assignee: Teledyne Licensing, LLC
    Inventors: D. Morgan Tench, Michael A. Cunningham, Paul H. Kobrin
  • Patent number: 7022210
    Abstract: A locally distributed electrode is made by placing a conducting metallic oxide layer and a counter electrode in contact with a noble metal electroplating solution and applying a negative potential to the metallic oxide layer relative to the counter electrode, such that the noble metal is electrodeposited from the solution preferentially at defect sites on a surface of the metallic oxide layer. The noble metal nuclei are selectively electrodeposited at the defect sites to form a locally distributed electrode made up of a dot matrix of metallic islands. For reversible electrochemical mirror (REM) devices, the presence of the noble metal renders mirror metal electrodeposition at the defect sites reversible so that the defects become part of the dot matrix electrode and extraneous deposition of the mirror metal on the conducting metallic oxide is avoided.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: April 4, 2006
    Assignee: Rockwell Scientific Licensing, LLC
    Inventor: D. Morgan Tench
  • Patent number: 6989084
    Abstract: A new cell assembly for semiconductor wafer electroplating in the plated-side-up configuration utilizes a narrow passageway around the perimeter of the wafer through which solution is forced so as to provide the laminar flow needed for effective Damascene copper plating. In addition, use of a cylindrical insulating cell wall whose inside diameter matches that of the wafer area being plated avoids overplating of the wafer periphery. Anode isolation in a compartment separated via a solution transport barrier prevents introduction of particulates and holds anolyte in place during wafer changes. This cell assembly is readily amendable to automated wafer plating.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: January 24, 2006
    Assignee: Rockwell Scientific Licensing, LLC
    Inventors: D. Morgan Tench, John T. White
  • Patent number: 6798556
    Abstract: The present invention is a reversible electrodeposition optical modulation device employing a segmented counter electrode that permits localized areas of a continuous optical modulation electrode to be switched independently of each other. Such devices can be configured to enable practically seamless switching over the entire device for smart window and adjustable mirror applications, or to minimize cross-talk and pixel overlap for display applications. Since the electrical contacts and switching circuitry are located on the counter electrode, more active area is available for optical modulation.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: September 28, 2004
    Assignee: Rockwell Scientific Licensing, LLC.
    Inventors: D. Morgan Tench, Ichiro Sugioka
  • Publication number: 20040150866
    Abstract: The present invention is a reversible electrodeposition optical modulation device employing a segmented counter electrode that permits localized areas of a continuous optical modulation electrode to be switched independently of each other. Such devices can be configured to enable practically seamless switching over the entire device for smart window and adjustable mirror applications, or to minimize cross-talk and pixel overlap for display applications. Since the electrical contacts and switching circuitry are located on the counter electrode, more active area is available for optical modulation.
    Type: Application
    Filed: January 31, 2003
    Publication date: August 5, 2004
    Applicant: Innovative Technology Licensing, LLC
    Inventors: D. Morgan Tench, Ichiro Sugioka
  • Patent number: 6721080
    Abstract: Reversible electrochemical mirror (REM) devices typically comprise a conductive oxide mirror electrode that is substantially transparent to radiation of some wavelengths, a counter electrode that may also be substantially transparent, and an electrolyte that contains ions of an electrodepositable metal. A voltage applied between the two electrodes causes electrodeposition of a mirror deposit on the mirror electrode and dissolution of the mirror deposit on the counter electrode, and these processes are reversed when the polarity of the applied voltage is changed. Such REM devices provide precise control over the reflection and transmission of radiation and can be used for a variety of applications, including smart windows and automatically adjusting automotive mirrors.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: April 13, 2004
    Inventors: D Morgan Tench, Petra V. Rowell
  • Publication number: 20040061919
    Abstract: Reversible electrochemical mirror (REM) devices typically comprise a conductive oxide mirror electrode that is substantially transparent to radiation of some wavelengths, a counter electrode that may also be substantially transparent, and an electrolyte that contains ions of an electrodepositable metal. A voltage applied between the two electrodes causes electrodeposition of a mirror deposit on the mirror electrode and dissolution of the mirror deposit on the counter electrode, and these processes are reversed when the polarity of the applied voltage is changed. Such REM devices provide precise control over the reflection and transmission of radiation and can be used for a variety of applications, including smart windows and automatically adjusting automotive mirrors.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Applicant: Innovative Technology Licensing, LLC
    Inventors: D. Morgan Tench, Petra V. Rowell
  • Patent number: 6709564
    Abstract: The acid copper sulfate solutions used for electroplating copper circuitry in trenches and vias in IC dielectric material in the Damascene process are replaced with a type of plating system based on the use of highly complexing anions (e.g., pyrophosphate, cyanide, sulfamate, etc.) to provide an inherently high overvoltage that effectively suppresses runaway copper deposition. Such systems, requiring only one easily-controlled organic additive species to provide outstanding leveling, are more efficacous for bottom-up filling of Damascene trenches and vias than acid copper sulfate baths, which require a minimum of two organic additive species. The highly complexed baths produce fine-grained copper deposits that are typically much harder than large-grained acid sulfate copper deposits, and which exhibit stable mechanical properties that do not change with time, thereby minimizing “dishing” and giving more consistent CMP results.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: March 23, 2004
    Assignee: Rockwell Scientific Licensing, LLC
    Inventors: D. Morgan Tench, John T. White, Dieter Dornisch, Maureen Brongo
  • Publication number: 20040020767
    Abstract: A locally distributed electrode is made by placing a conducting metallic oxide layer and a counter electrode in contact with a noble metal electroplating solution and applying a negative potential to the metallic oxide layer relative to the counter electrode, such that the noble metal is electrodeposited from the solution preferentially at defect sites on a surface of the metallic oxide layer. The noble metal nuclei are selectively electrodeposited at the defect sites to form a locally distributed electrode made up of a dot matrix of metallic islands. For reversible electrochemical mirror (REM) devices, the presence of the noble metal renders mirror metal electrodeposition at the defect sites reversible so that the defects become part of the dot matrix electrode and extraneous deposition of the mirror metal on the conducting metallic oxide is avoided.
    Type: Application
    Filed: August 1, 2002
    Publication date: February 5, 2004
    Applicant: Innovative Technology Licensing, LLC
    Inventor: D. Morgan Tench
  • Patent number: 6579430
    Abstract: A cathode assembly for semiconductor wafer plating employs a polymer coating on a metal structural ring to provide a low-profile seal to the perimeter of the wafer surface to be plated. The polymer coating also electrically insulates the metal so that it can be used in contact with the plating solution and still be part of the electrical contact system, eliminating the need for a protective plastic housing. This invention permits the dimensions of the cathode assembly to be minimized. A compact cathode assembly with minimum protrusion above the wafer plated surface enables modifications to the plating cell and agitation system providing more uniform copper deposits across the wafer surface and facilitating automation of the wafer plating process.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: June 17, 2003
    Assignee: Innovative Technology Licensing, LLC
    Inventors: Greg Davis, Alex Moffatt, D. Morgan Tench, John T. White
  • Publication number: 20030085118
    Abstract: A new cell assembly for semiconductor wafer electroplating in the plated-side-up configuration utilizes a narrow passageway around the perimeter of the wafer through which solution is forced so as to provide the laminar flow needed for effective Damascene copper plating. In addition, use of a cylindrical insulating cell wall whose inside diameter matches that of the wafer area being plated avoids overplating of the wafer periphery. Anode isolation in a compartment separated via a solution transport barrier prevents introduction of particulates and holds anolyte in place during wafer changes. This cell assembly is readily amendable to automated wafer plating.
    Type: Application
    Filed: November 2, 2001
    Publication date: May 8, 2003
    Applicant: Innovative Technology Licensing, LLC
    Inventors: D. Morgan Tench, John T. White
  • Publication number: 20030085119
    Abstract: A cathode assembly for semiconductor wafer plating employs a polymer coating on a metal structural ring to provide a low-profile seal to the perimeter of the wafer surface to be plated. The polymer coating also electrically insulates the metal so that it can be used in contact with the plating solution and still be part of the electrical contact system, eliminating the need for a protective plastic housing. This invention permits the dimensions of the cathode assembly to be minimized. A compact cathode assembly with minimum protrusion above the wafer plated surface enables modifications to the plating cell and agitation system providing more uniform copper deposits across the wafer surface and facilitating automation of the wafer plating process.
    Type: Application
    Filed: November 2, 2001
    Publication date: May 8, 2003
    Applicant: Innovative Technology Licensing, LLC
    Inventors: Greg Davis, Alex Moffatt, D. Morgan Tench, John T. White
  • Patent number: 6552843
    Abstract: The present invention is a reversible electrodeposition optical modulation device employing an ionic liquid electrolyte, which is comprised of a mixture of an ionic organic compound and the salt of an electrodepositable metal. The solventless ionic liquid can contain very high concentrations of electrodepositable metal ions and provides the high current carrying capability needed for fast device switching. Switching uniformity is also significantly improved since the electrolyte resistance is at least an order of magnitude higher than that of typical solvent-based electrolytes. Fast switching and good cycle life for high quality mirror electrodeposits in reversible electrochemical mirror (REM) devices was demonstrated. Best results were obtained for novel silver halide electrolytes employing pyrrolidinium and N-methylpyrrolidinium cations.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: April 22, 2003
    Assignee: Innovative Technology Licensing LLC
    Inventors: D. Morgan Tench, Leslie F. Warren, Jr.
  • Patent number: 6503343
    Abstract: A direct displacement plating process provides a uniform, adherent coating of a relatively stable metal (e.g., nickel) on a highly reactive metal (e.g., aluminum) that is normally covered with a recalcitrant oxide layer. The displacement reaction proceeds, preferably in a nonaqueous solvent, as the oxide layer is dissolved by a fluoride activator. Halide anions are used to provide high solubility, to serve as an anhydrous source of stable metal ions, and to control the rate of the displacement reaction. A low concentration of activator species and little or no solution agitation are used to cause depletion of the activator species within pores in the surface oxide so that attack of the reactive metal substrate is minimized. Used in conjunction with electroless nickel deposition to thicken the displacement coating, this process can be used to render aluminum pads on IC chips solderable without the need for expensive masks and vacuum deposition operations.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: January 7, 2003
    Assignee: Innovative Technology Licensing, LLC
    Inventors: D. Morgan Tench, Leslie F. Warren, Jr., John T. White
  • Patent number: 6400491
    Abstract: A reversible electrochemical mirror (REM) includes a first electrode and a second electrode, one of which is substantially transparent to at least a portion of the spectrum of electromagnetic radiation. An essentially nonaqueous electrolytic solution, disposed between the first and second electrodes, contains ions of an electrodepositable metal having a molar concentration of more than 0.5 M. The electrolytic solution also contains halide and/or pseudohalide anions having a total molar concentration ratio of at least 2:1 relative to the concentration of the electrodepositable metal cations. A negative electrical potential applied to the first electrode causes deposited metal to be dissolved from the second electrode into the electrolytic solution and to be electrodeposited from the solution onto the first electrode to form a mirror deposit, thereby affecting the reflectivity of the REM device for electromagnetic radiation.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: June 4, 2002
    Assignee: Innovative Technology Licensing, LLC
    Inventors: D. Morgan Tench, Leslie F. Warren, Jr., Petra V. Rowell
  • Patent number: 6301039
    Abstract: Reversible electrochemical mirror (REM) devices typically comprise a conductive oxide mirror electrode that is substantially transparent to radiation of some wavelengths, a counter electrode that may also be substantially transparent, and an electrolyte that contains ions of an electrodepositable metal. A voltage applied between the two electrodes causes electrodeposition of a mirror deposit on the mirror electrode and dissolution of the mirror deposit on the counter electrode, and these processes are reversed when the polarity of the applied voltage is changed. Such REM devices provide precise control over the reflection and transmission of radiation and can be used for a variety of applications, including smart windows and automatically adjusting automotive mirrors. According to the present invention, measurements of the sheet resistance of the mirror electrode in a REM device are correlated with the thickness of electrodeposited mirror metal and can be used to monitor the reflectance of the device.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: October 9, 2001
    Assignee: Rockwell Technologies, LLC
    Inventor: D. Morgan Tench