Patents by Inventor D. V. Nirmal Ramaswamy

D. V. Nirmal Ramaswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9911489
    Abstract: Memory cells, memory systems and methods are described. In one embodiment, a memory cell includes electrodes and a memory element, and a first electrically conductive structure is formed within dielectric material providing the memory element in a low resistance state as a result of a first voltage of a first polarity being applied across the electrodes. Additionally, the first electrically conductive structure is removed from the dielectric material providing the memory element in a high resistance state as a result of a second voltage of a second polarity, which is opposite to the first polarity, being applied across the electrodes. A permanent and irreversible electrically conductive structure is formed within the dielectric material providing the memory element in the low resistance state as a result of a third voltage of the second polarity and having an increased potential compared with the second voltage being applied across the electrodes.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: March 6, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Wataru Otsuka, Takafumi Kunihiro, Tomohito Tsushima, Makoto Kitagawa, Jun Sumino, D. V. Nirmal Ramaswamy
  • Patent number: 9893282
    Abstract: A resistive memory element comprises a first electrode, an active material over the first electrode, a buffer material over the active material and comprising longitudinally extending, columnar grains of crystalline material, an ion reservoir material over the buffer material, and a second electrode over the ion reservoir material. A memory cell, a memory device, an electronic system, and a method of forming a resistive memory element are also described.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: February 13, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Christopher W. Petz, Yongjun Jeff Hu, Scott E. Sills, D. V. Nirmal Ramaswamy
  • Publication number: 20180006044
    Abstract: Ferroelectric memory and methods of forming the same are provided. An example memory cell can include a buried recessed access device (BRAD) formed in a substrate and a ferroelectric capacitor formed on the BRAD.
    Type: Application
    Filed: August 31, 2017
    Publication date: January 4, 2018
    Inventors: Ashonita A. Chavan, Alessandro Calderoni, D.V. Nirmal Ramaswamy
  • Patent number: 9853212
    Abstract: Methods, devices, and systems associated with oxide based memory can include a method of forming a resistive switching region of a memory cell. Forming a resistive switching region of a memory cell can include forming a metal oxide material on an electrode and forming a metal material on the metal oxide material, wherein the metal material formation causes a reaction that results in a graded metal oxide portion of the memory cell.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: December 26, 2017
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Patent number: 9847123
    Abstract: Multi-bit ferroelectric memory devices and methods of forming the same are provided. One example method of forming a multi-bit ferroelectric memory device can include forming a first ferroelectric material on a first side of a via, removing a material to expose a second side of the via, and forming second ferroelectric material on the second side of the via at a different thickness compared to the first side of the via.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: December 19, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, F. Daniel Gealy, D. V. Nirmal Ramaswamy, Chandra V. Mouli
  • Publication number: 20170358599
    Abstract: An apparatus comprises field-effect transistor (FET) structures stacked horizontally and vertically in a three-dimensional memory array architecture, gates extending vertically and spaced horizontally between the plurality of FET structures, and a ferroelectric material separating the FET structures and the gates. Individual ferroelectric FETs (FeFETs) are formed at intersections of the FET structures, the gates, and the ferroelectric material. Another apparatus comprises a plurality of bit lines and word lines. Each bit line has at least two sides that are coupled with a ferroelectric material such that each bit line is shared by neighboring gates to form a plurality of FeFETs. A method of operating a memory array comprises applying a combination of voltages to a plurality of word lines and digit lines for a desired operation for a plurality of FeFET memory cells, at least one digit line having the plurality of FeFET memory cells accessible by neighboring gates.
    Type: Application
    Filed: August 28, 2017
    Publication date: December 14, 2017
    Inventors: D.V. Nirmal Ramaswamy, Adam D. Johnson
  • Publication number: 20170346007
    Abstract: Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.
    Type: Application
    Filed: July 28, 2017
    Publication date: November 30, 2017
    Inventors: Matthew N. Rocklein, D.V. Nirmal Ramaswamy
  • Patent number: 9818756
    Abstract: A charge-retaining transistor includes a control gate and an inter-gate dielectric alongside the control gate. A charge-storage node of the transistor includes first semiconductor material alongside the inter-gate dielectric. Islands of charge-trapping material are alongside the first semiconductor material. An oxidation-protective material is alongside the islands. Second semiconductor material is alongside the oxidation-protective material, and is of some different composition from that of the oxidation-protective material. Tunnel dielectric is alongside the charge-storage node. Channel material is alongside the tunnel dielectric. Additional embodiments, including methods, are disclosed.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: November 14, 2017
    Assignee: Micron Technology, Inc.
    Inventor: D. V. Nirmal Ramaswamy
  • Patent number: 9805789
    Abstract: Methods, devices, and systems associated with oxide based memory are described herein. In one or more embodiments, a method of forming an oxide based memory cell includes forming a first electrode, forming a tunnel barrier, wherein a first portion of the tunnel barrier includes a first material and a second portion of the tunnel barrier includes a second material, forming an oxygen source, and forming a second electrode.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: October 31, 2017
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Publication number: 20170309818
    Abstract: A memory cell comprising a threshold switching material over a first electrode on a substrate. The memory cell includes a second electrode over the threshold switching material and at least one dielectric material between the threshold switching material and at least one of the first electrode and the second electrode. A memory material overlies the second electrode. The dielectric material may directly contact the threshold switching material and each of the first electrode and the second electrode. Memory cells including only one dielectric material between the threshold switching material and an electrode are disclosed. A memory device including the memory cells and methods of forming the memory cells are also described.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Inventors: Tsz W. Chan, D.V. Nirmal Ramaswamy, Qian Tao, Yongjun Jeff Hu, Everett A. McTeer
  • Patent number: 9786684
    Abstract: An apparatus comprises field-effect transistor (FET) structures stacked horizontally and vertically in a three-dimensional memory array architecture, gates extending vertically and spaced horizontally between the plurality of FET structures, and a ferroelectric material separating the FET structures and the gates. Individual ferroelectric FETs (FeFETs) are formed at intersections of the FET structures, the gates, and the ferroelectric material. Another apparatus comprises a plurality of bit lines and word lines. Each bit line has at least two sides that are coupled with a ferroelectric material such that each bit line is shared by neighboring gates to form a plurality of FeFETs. A method of operating a memory array comprises applying a combination of voltages to a plurality of word lines and digit lines for a desired operation for a plurality of FeFET memory cells, at least one digit line having the plurality of FeFET memory cells accessible by neighboring gates.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: October 10, 2017
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Adam D. Johnson
  • Patent number: 9768181
    Abstract: Ferroelectric memory and methods of forming the same are provided. An example memory cell can include a buried recessed access device (BRAD) formed in a substrate and a ferroelectric capacitor formed on the BRAD.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: September 19, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Ashonita A. Chavan, Alessandro Calderoni, D. V. Nirmal Ramaswamy
  • Publication number: 20170263683
    Abstract: Three dimensional memory arrays and methods of forming the same are provided. An example three dimensional memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines such that the at least one conductive extension intersects each of the plurality of first conductive lines. Storage element material is arranged around the at least one conductive extension, and a select device is arranged around the storage element material. The storage element material is radially adjacent an insulation material separating the plurality of first conductive lines, and the plurality of materials arranged around the storage element material are radially adjacent each of the plurality of first conductive lines.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: D.V. Nirmal Ramaswamy, Scott E. Sills, Gurtej S. Sandhu
  • Patent number: 9728584
    Abstract: Three dimensional memory arrays and methods of forming the same are provided. An example three dimensional memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines such that the at least one conductive extension intersects each of the plurality of first conductive lines. Storage element material is arranged around the at least one conductive extension, and a select device is arranged around the storage element material. The storage element material is radially adjacent an insulation material separating the plurality of first conductive lines, and the plurality of materials arranged around the storage element material are radially adjacent each of the plurality of first conductive lines.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: August 8, 2017
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Scott E. Sills, Gurtej S. Sandhu
  • Patent number: 9716225
    Abstract: A memory cell comprising a threshold switching material over a first electrode on a substrate. The memory cell includes a second electrode over the threshold switching material and at least one dielectric material between the threshold switching material and at least one of the first electrode and the second electrode. A memory material overlies the second electrode. The dielectric material may directly contact the threshold switching material and each of the first electrode and the second electrode. Memory cells including only one dielectric material between the threshold switching material and an electrode are disclosed. A memory device including the memory cells and methods of forming the memory cells are also described.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: July 25, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Tsz W. Chan, D. V. Nirmal Ramaswamy, Qian Tao, Yongjun Jeff Hu, Everett A. McTeer
  • Patent number: 9698343
    Abstract: A method of forming a ferroelectric memory cell. The method comprises forming an electrode material exhibiting a desired dominant crystallographic orientation. A hafnium-based material is formed over the electrode material and the hafnium-based material is crystallized to induce formation of a ferroelectric material having a desired crystallographic orientation. Additional methods are also described, as are semiconductor device structures including the ferroelectric material.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: July 4, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Qian Tao, Matthew N. Rocklein, Beth R. Cook, D.V. Nirmal Ramaswamy
  • Publication number: 20170186757
    Abstract: A method of forming a ferroelectric memory cell. The method comprises forming an electrode material exhibiting a desired dominant crystallographic orientation. A hafnium-based material is formed over the electrode material and the hafnium-based material is crystallized to induce formation of a ferroelectric material having a desired crystallographic orientation. Additional methods are also described, as are semiconductor device structures including the ferroelectric material.
    Type: Application
    Filed: March 15, 2017
    Publication date: June 29, 2017
    Inventors: Qian Tao, Matthew N. Rocklein, Beth R. Cook, D.V. Nirmal Ramaswamy
  • Patent number: 9691981
    Abstract: The present disclosure includes memory cell structures and method of forming the same. One such method includes forming a memory cell includes forming, in a first direction, a select device stack including a select device formed between a first electrode and a second electrode; forming, in a second direction, a plurality of sacrificial material lines over the select device stack to form a via; forming a programmable material stack within the via; and removing the plurality of sacrificial material lines and etching through a portion of the select device stack to isolate the select device.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: June 27, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, D.V. Nirmal Ramaswamy
  • Publication number: 20170148987
    Abstract: The present disclosure includes memory cell structures and method of forming the same. One such method includes forming a memory cell includes forming, in a first direction, a select device stack including a select device formed between a first electrode and a second electrode; forming, in a second direction, a plurality of sacrificial material lines over the select device stack to form a via; forming a programmable material stack within the via; and removing the plurality of sacrificial material lines and etching through a portion of the select device stack to isolate the select device.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Scott E. Sills, D.V. Nirmal Ramaswamy
  • Publication number: 20170148512
    Abstract: Multi-bit ferroelectric memory devices and methods of forming the same are provided. One example method of forming a multi-bit ferroelectric memory device can include forming a first ferroelectric material on a first side of a via, removing a material to expose a second side of the via, and forming second ferroelectric material on the second side of the via at a different thickness compared to the first side of the via.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Kamal M. Karda, F. Daniel Gealy, D.V. Nirmal Ramaswamy, Chandra V. Mouli