Patents by Inventor D. V. Nirmal Ramaswamy

D. V. Nirmal Ramaswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140153312
    Abstract: Memory cells having ferroelectric materials and methods of operating and forming the same are described herein. As an example, a memory cell can include a first electrode and a second electrode, and an ion source and a ferroelectric material formed between the first electrode and the second electrode, where the ferroelectric material serves to stabilize storage of ions transitioned from the ion source.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej S. Sandhu, D.V. Nirmal Ramaswamy
  • Publication number: 20140112052
    Abstract: Memory programming methods and memory systems are described. One example memory programming method includes first applying a first signal to a memory cell to attempt to program the memory cell to a desired state, wherein the first signal corresponds to the desired state, after the first applying, determining that the memory cell failed to place in the desired state, after the determining, second applying a second signal to the memory cell, wherein the second signal corresponds to another state which is different than the desired state, and after the second applying, third applying a third signal to the memory cell to program the memory cell to the desired state, wherein the third signal corresponds to the desired state. Additional method and apparatus are described.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jonathan Strand, Adam Johnson, Xiaonan Chen, D.V. Nirmal Ramaswamy
  • Publication number: 20140106533
    Abstract: Some embodiments include memory cells having programmable material between a pair of electrodes. The programmable material includes a material selected from the group consisting of a metal silicate with a ratio of metal to silicon within a range of from about 2 to about 6, and metal aluminate with a ratio of metal to aluminum within a range of from about 2 to about 6. Some embodiments include methods of forming memory cells. First electrode material is formed. Programmable material is formed over the first electrode material, with the programmable material including metal silicate and/or metal aluminate. Second electrode material is formed over the programmable material, and then an anneal is conducted at a temperature within a range of from about 300° C. to about 500° C. for a time of from about 1 minute to about 1 hour.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 17, 2014
    Applicant: Micron Technology, Inc.
    Inventors: D.V. Nirmal Ramaswamy, Murali Balakrishnan, Alessandro Torsi, Noel Rocklein
  • Publication number: 20140106534
    Abstract: A method of forming a memory cell includes forming one of multivalent metal oxide material or oxygen-containing dielectric material over a first conductive structure. An outer surface of the multivalent metal oxide material or the oxygen-containing dielectric material is treated with an organic base. The other of the multivalent metal oxide material or oxygen-containing dielectric material is formed over the treated outer surface. A second conductive structure is formed over the other of the multivalent metal oxide material or oxygen-containing dielectric material.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 17, 2014
    Applicant: Micron Technology, Inc.
    Inventors: D.V. Nirmal Ramaswamy, Beth R. Cook, Lei Bi, Wayne Huang, Ian C. Laboriante
  • Publication number: 20140097486
    Abstract: Some embodiments include methods of forming semiconductor constructions. Alternating layers of n-type doped material and p-type doped material may be formed. The alternating layers may be patterned into a plurality of vertical columns that are spaced from one another by openings. The openings may be lined with tunnel dielectric, charge-storage material and blocking dielectric. Alternating layers of insulative material and conductive control gate material may be formed within the lined openings. Some embodiments include methods of forming NAND unit cells. Columns of alternating n-type material and p-type material may be formed. The columns may be lined with a layer of tunnel dielectric, a layer of charge-storage material, and a layer of blocking dielectric. Alternating layers of insulative material and conductive control gate material may be formed between the lined columns. Some embodiments include semiconductor constructions, and some embodiments include NAND unit cells.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 10, 2014
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Publication number: 20140054709
    Abstract: A transistor device includes a pair of source/drain regions having a channel region there-between. A first gate is proximate the channel region. A gate dielectric is between the first gate and the channel region. A second gate is proximate the channel region. A programmable material is between the second gate and the channel region. The programmable material includes at least one of a) a multivalent metal oxide portion and an oxygen-containing dielectric portion, or b) a multivalent metal nitride portion and a nitrogen-containing dielectric portion. Memory cells and arrays of memory cells are disclosed.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 27, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Publication number: 20140034896
    Abstract: A method of forming a nonvolatile memory cell includes forming a first electrode having a first current conductive material and a circumferentially self-aligned second current conductive material projecting elevationally outward from the first current conductive material. The second current conductive material is different in composition from the first current conductive material. A programmable region is formed over the first current conductive material and over the projecting second current conductive material of the first electrode. A second electrode is formed over the programmable region. In one embodiment, the programmable region is ion conductive material, and at least one of the first and second electrodes has an electrochemically active surface directly against the ion conductive material. Other method and structural aspects are disclosed.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: Micron Technology, Inc.
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Patent number: 8637846
    Abstract: Semiconductor structures including a zirconium oxide material and methods of forming the same are described herein. As an example, a semiconductor structure can include a zirconium oxide material, a perovskite structure material, and a noble metal material formed between the zirconium oxide material and the perovskite structure material.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 28, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Dale W. Collins, D. V. Nirmal Ramaswamy, Matthew N. Rocklein, Swapnil A. Lengade
  • Patent number: 8633084
    Abstract: A method of forming a memory cell includes forming one of multivalent metal oxide material or oxygen-containing dielectric material over a first conductive structure. An outer surface of the multivalent metal oxide material or the oxygen-containing dielectric material is treated with an organic base. The other of the multivalent metal oxide material or oxygen-containing dielectric material is formed over the treated outer surface. A second conductive structure is formed over the other of the multivalent metal oxide material or oxygen-containing dielectric material.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: January 21, 2014
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Beth R. Cook, Lei Bi, Wayne Huang, Ian C. Laboriante
  • Patent number: 8629421
    Abstract: Some embodiments include memory cells having programmable material between a pair of electrodes. The programmable material includes a material selected from the group consisting of a metal silicate with a ratio of metal to silicon within a range of from about 2 to about 6, and metal aluminate with a ratio of metal to aluminum within a range of from about 2 to about 6. Some embodiments include methods of forming memory cells. First electrode material is formed. Programmable material is formed over the first electrode material, with the programmable material including metal silicate and/or metal aluminate. Second electrode material is formed over the programmable material, and then an anneal is conducted at a temperature within a range of from about 300° C. to about 500° C. for a time of from about 1 minute to about 1 hour.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: January 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: D.V. Nirmal Ramaswamy, Murali Balakrishnan, Alessandro Torsi, Noel Rocklein
  • Publication number: 20130334483
    Abstract: A method of forming a resistive memory element comprises forming an oxide material over a first electrode. The oxide material is exposed to a plasma process to form a treated oxide material. A second electrode is formed on the treated oxide material. Additional methods of forming a resistive memory element, as well as related resistive memory elements, resistive memory cells, and resistive memory devices are also described.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Sanh D. Tang, Alessandro Torsi, Muralikrishnan Balakrishnan, Xiaonan Chen, John K. Zahurak
  • Patent number: 8610193
    Abstract: Some embodiments include methods of forming semiconductor constructions. Alternating layers of n-type doped material and p-type doped material may be formed. The alternating layers may be patterned into a plurality of vertical columns that are spaced from one another by openings. The openings may be lined with tunnel dielectric, charge-storage material and blocking dielectric. Alternating layers of insulative material and conductive control gate material may be formed within the lined openings. Some embodiments include methods of forming NAND unit cells. Columns of alternating n-type material and p-type material may be formed. The columns may be lined with a layer of tunnel dielectric, a layer of charge-storage material, and a layer of blocking dielectric. Alternating layers of insulative material and conductive control gate material may be formed between the lined columns. Some embodiments include semiconductor constructions, and some embodiments include NAND unit cells.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: December 17, 2013
    Assignee: Micron Technology Inc.
    Inventor: D. V. Nirmal Ramaswamy
  • Publication number: 20130320283
    Abstract: A method of forming an array of memory cells includes forming lines of covering material that are elevationally over and along lines of spaced sense line contacts. Longitudinal orientation of the lines of covering material is used in forming lines comprising programmable material and outer electrode material that are between and along the lines of covering material. The covering material is removed over the spaced sense line contacts and the spaced sense line contacts are exposed. Access lines are formed. Sense lines are formed that are electrically coupled to the spaced sense line contacts. The sense lines are angled relative to the lines of spaced sense line contacts and relative to the access lines. Other embodiments, including structure independent of method, are disclosed.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Scott E. Sills, D. V. Nirmal Ramaswamy
  • Publication number: 20130299893
    Abstract: Some embodiments include memory cells which have channel-supporting material, dielectric material over the channel-supporting material, carrier-trapping material over the dielectric material and an electrically conductive electrode material over and directly against the carrier-trapping material; where the carrier-trapping material includes gallium, indium, zinc and oxygen. Some embodiments include methods of storing information. A memory cell to is provided which has a channel-supporting material, a dielectric material over the channel-supporting material, a carrier-trapping material over the dielectric material, and an electrically conductive electrode material over and directly against the carrier-trapping material; where the carrier-trapping material includes gallium, indium, zinc and oxygen. It is determined if carriers are trapped in the carrier-trapping material to thereby ascertain a memory state of the memory cell.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventors: Gurtej S. Sandhu, D.V. Nirmal Ramaswamy
  • Patent number: 8514626
    Abstract: Memory cells may have channel-supporting material, dielectric material over the channel-supporting material, carrier-trapping material over the dielectric material and an electrically conductive electrode material over and directly against the carrier-trapping material; where the carrier-trapping material includes gallium, indium, zinc and oxygen. A memory cell may be provided which has a channel-supporting material, a dielectric material over the channel-supporting material, a carrier-trapping material over the dielectric material, and an electrically conductive electrode material over and directly against the carrier-trapping material; where the carrier-trapping material includes gallium, indium, zinc and oxygen. It may be determined if carriers are trapped in the carrier-trapping material to thereby ascertain a memory state of the memory cell.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D.V. Nirmal Ramaswamy
  • Publication number: 20130168630
    Abstract: Some embodiments include memory structures having a diode over a memory cell. The memory cell can include programmable material between a pair of electrodes, with the programmable material containing a multivalent metal oxide directly against a high-k dielectric. The diode can include a first diode electrode directly over one of the memory cell electrodes and electrically coupled with the memory cell electrode, and can include a second diode electrode laterally outward of the first diode electrode and not directly over the memory cell. Some embodiments include memory arrays comprising the memory structures, and some embodiments include methods of making the memory structures.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Mark S. Korber
  • Publication number: 20130109147
    Abstract: Some embodiments include methods of forming memory cells. Metal oxide may be deposited over a first electrode, with the deposited metal oxide having a relatively low degree of crystallinity. The degree of crystallinity within the metal oxide may be increased after the deposition of the metal oxide. A dielectric material may be formed over the metal oxide, and a second electrode may be formed over the dielectric material. The degree of crystallinity may be increased with a thermal treatment. The thermal treatment may be conducted before, during, and/or after formation of the dielectric material.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Noel Rocklein, D.V. Nirmal Ramaswamy, Dale W. Collins, Swapnil Lengade, Srividya Krishnamurthy, Mark Korber
  • Publication number: 20130070511
    Abstract: Select devices for memory cell applications and methods of forming the same are described herein. As an example, one or more memory cells comprise a a select device structure including a two terminal select device having a current-voltage (I-V) profile associated therewith, and a non-ohmic device in series with the two terminal select device. The combined two terminal select device and non-ohmic device provide a composite I-V profile of the select device structure that includes a modified characteristic as compared to the I-V profile, and the modified characteristic is based on at least one operating voltage associated with the memory cell.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David H. Wells, D.V. Nirmal Ramaswamy
  • Publication number: 20130069030
    Abstract: Resistive memory cells including an integrated select device and storage element and methods of forming the same are described herein. As an example, a resistive memory cell can include a select device structure including a Schottky interface, and a storage element integrated with the select device structure such that an electrode corresponding to the Schottky interface serves as a first electrode of the storage element. The storage element can include a storage material formed between the first electrode and a second electrode.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David H. Wells, D.V. Nirmal Ramaswamy, Kirk D. Prall
  • Patent number: 8395202
    Abstract: A memory cell is provided including a tunnel dielectric layer overlying a semiconductor substrate. The memory cell also includes a floating gate having a first portion overlying the tunnel dielectric layer and a second portion in the form of a nanorod extending from the first portion. In addition, a control gate layer is separated from the floating gate by an intergate dielectric layer.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: March 12, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D. V. Nirmal Ramaswamy