Patents by Inventor D. V. Nirmal Ramaswamy

D. V. Nirmal Ramaswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8394683
    Abstract: Some embodiments include methods of forming semiconductor constructions. Alternating layers of n-type doped material and p-type doped material may be formed. The alternating layers may be patterned into a plurality of vertical columns that are spaced from one another by openings. The openings may be lined with tunnel dielectric, charge-storage material and blocking dielectric. Alternating layers of insulative material and conductive control gate material may be formed within the lined openings. Some embodiments include methods of forming NAND unit cells. Columns of alternating n-type material and p-type material may be formed. The columns may be lined with a layer of tunnel dielectric, a layer of charge-storage material, and a layer of blocking dielectric. Alternating layers of insulative material and conductive control gate material may be formed between the lined columns. Some embodiments include semiconductor constructions, and some embodiments include NAND unit cells.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: March 12, 2013
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Publication number: 20130028016
    Abstract: Some embodiments include memory cells which have channel-supporting material, dielectric material over the channel-supporting material, carrier-trapping material over the dielectric material and an electrically conductive electrode material over and directly against the carrier-trapping material; where the carrier-trapping material includes gallium, indium, zinc and oxygen. Some embodiments include methods of storing information. A memory cell to is provided which has a channel-supporting material, a dielectric material over the channel-supporting material, a carrier-trapping material over the dielectric material, and an electrically conductive electrode material over and directly against the carrier-trapping material; where the carrier-trapping material includes gallium, indium, zinc and oxygen. It is determined if carriers are trapped in the carrier-trapping material to thereby ascertain a memory state of the memory cell.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D.V. Nirmal Ramaswamy
  • Publication number: 20130015422
    Abstract: Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Publication number: 20130010525
    Abstract: Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Patent number: 8351242
    Abstract: Some embodiments include electronic devices having two capacitors connected in series. The two capacitors share a common electrode. One of the capacitors includes a region of a semiconductor substrate and a dielectric between such region and the common electrode. The other of the capacitors includes a second electrode and ion conductive material between the second electrode and the common electrode. At least one of the first and second electrodes has an electrochemically active surface directly against the ion conductive material. Some embodiments include memory cells having two capacitors connected in series, and some embodiments include memory arrays containing such memory cells.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 8, 2013
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Kirk D. Prall
  • Publication number: 20130001673
    Abstract: Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Matthew N. Rocklein, Rhett Brewer
  • Publication number: 20120292584
    Abstract: Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Matthew N. Rocklein, D.V. Nirmal Ramaswamy
  • Patent number: 8313996
    Abstract: Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: November 20, 2012
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Gurtej Sandhu
  • Publication number: 20120267632
    Abstract: Methods, devices, and systems are provided for a select device that can include a semiconductive stack of at least one semiconductive material formed on a first electrode, where the semiconductive stack can have a thickness of about 700 angstroms (?) or less. Each of the at least one semiconductive material can have an associated band gap of about 4 electron volts (eV) or less and a second electrode can be formed on the semiconductive stack.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 25, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Patent number: 8288811
    Abstract: Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: October 16, 2012
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Matthew N. Rocklein, Rhett T. Brewer
  • Publication number: 20120248396
    Abstract: Methods, devices, and systems associated with oxide based memory can include a method of forming a resistive switching region of a memory cell. Forming a resistive switching region of a memory cell can include forming a metal oxide material on an electrode and forming a metal material on the metal oxide material, wherein the metal material formation causes a reaction that results in a graded metal oxide portion of the memory cell.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Patent number: 8228743
    Abstract: Some embodiments include memory cells having vertically-stacked charge-trapping zones spaced from one another by dielectric material. The dielectric material may comprise high-k material. One or more of the charge-trapping zones may comprise metallic material. Such metallic material may be present as a plurality of discrete isolated islands, such as nanodots. Some embodiments include methods of forming memory cells in which two charge-trapping zones are formed over tunnel dielectric, with the zones being vertically displaced relative to one another, and with the zone closest to the tunnel dielectric having deeper traps than the other zone. Some embodiments include electronic systems comprising memory cells. Some embodiments include methods of programming memory cells having vertically-stacked charge-trapping zones.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: July 24, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Kyu S. Min, Rhett T. Brewer, Tejas Krishnamohan, Thomas M. Graettinger, D. V. Nirmal Ramaswamy, Ronald A Weimer, Arup Bhattacharyya
  • Patent number: 8183110
    Abstract: Some embodiments include memory cells. The memory cells may include a tunnel dielectric material, a charge-retaining region over the tunnel dielectric material, crystalline ultra-high k dielectric material over the charge-retaining region, and a control gate material over the crystalline ultra-high k dielectric material. Additionally, the memory cells may include an amorphous region between the charge-retaining region and the crystalline ultra-high k dielectric material, and/or may include an amorphous region between the crystalline ultra-high k dielectric material and the control gate material. Some embodiments include methods of forming memory cells which contain an amorphous region between a charge-retaining region and a crystalline ultra-high k dielectric material, and/or which contain an amorphous region between a crystalline ultra-high k dielectric material and a control gate material.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: May 22, 2012
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Noel Rocklein, Kyu S. Min
  • Patent number: 8169032
    Abstract: The invention includes methods of forming PMOS transistors and NMOS transistors. The NMOS transistors can be formed to have a thin silicon-containing material between a pair of metal nitride materials, while the PMOS transistors are formed to have the metal nitride materials directly against one another. The invention also includes constructions which contain an NMOS transistor gate stack having a thin silicon-containing material between a pair of metal nitride materials. The silicon-containing material can, for example, consist of silicon, conductively-doped silicon, or silicon oxide; and can have a thickness of less than or equal to about 30 angstroms.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: May 1, 2012
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Venkatesan Ananthan
  • Publication number: 20120074373
    Abstract: Some embodiments include electronic devices having two capacitors connected in series. The two capacitors share a common electrode. One of the capacitors includes a region of a semiconductor substrate and a dielectric between such region and the common electrode. The other of the capacitors includes a second electrode and ion conductive material between the second electrode and the common electrode. At least one of the first and second electrodes has an electrochemically active surface directly against the ion conductive material. Some embodiments include memory cells having two capacitors connected in series, and some embodiments include memory arrays containing such memory cells.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 29, 2012
    Inventors: D.V. Nirmal Ramaswamy, Kirk D. Prall
  • Publication number: 20120069624
    Abstract: Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Publication number: 20120001248
    Abstract: A memory cell is provided including a tunnel dielectric layer overlying a semiconductor substrate. The memory cell also includes a floating gate having a first portion overlying the tunnel dielectric layer and a second portion in the form of a nanorod extending from the first portion. In addition, a control gate layer is separated from the floating gate by an intergate dielectric layer.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D.V. Nirmal Ramaswamy
  • Patent number: 8089128
    Abstract: A transistor gate forming method includes forming a first and a second transistor gate. Each of the two gates includes a lower metal layer and an upper metal layer. The lower metal layer of the first gate originates from an as-deposited material exhibiting a work function the same as exhibited in an as-deposited material from which the lower metal layer of the second gate originates. However, the first gate's lower metal layer exhibits a modified work function different from a work function exhibited by the second gate's lower metal layer. The first gate's lower metal layer may contain less oxygen and/or carbon in comparison to the second gate's lower metal layer. The first gate's lower metal layer may contain more nitrogen in comparison to the second gate's lower metal layer. The first gate may be a n-channel gate and the second gate may be a p-channel gate.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Ravi Iyer
  • Publication number: 20110297927
    Abstract: Methods, devices, and systems associated with oxide based memory are described herein. In one or more embodiments, a method of forming an oxide based memory cell includes forming a first electrode, forming a tunnel barrier, wherein a first portion of the tunnel barrier includes a first material and a second portion of the tunnel barrier includes a second material, forming an oxygen source, and forming a second electrode.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 8, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Publication number: 20110227142
    Abstract: Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 22, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D.V. Nirmal Ramaswamy, Matthew N. Rocklein, Rhett Brewer