Patents by Inventor Da-Yuan Shih

Da-Yuan Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080202792
    Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 28, 2008
    Inventors: Keith E. Fogel, Balaram Ghosal, Sung K. Kang, Stephen Kilpatrick, Paul A. Lauro, Henry A. Nye, Da-Yuan Shih, Donna S. Zupanski-Nielsen
  • Publication number: 20080203585
    Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 28, 2008
    Inventors: Keith E. Fogel, Balaram Ghosal, Sung K. Kang, Stephen Kilpatrick, Paul A. Lauro, Henry A. Nye, Da-Yuan Shih, Donna S. Zupanski-Nielsen
  • Patent number: 7410833
    Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting composition including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: August 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Balaram Ghosal, Sung K. Kang, Stephen Kilpatrick, Paul A. Lauro, Henry A. Nye, III, Da-Yuan Shih, Donna S. Zupanski-Nielsen
  • Publication number: 20080182124
    Abstract: A solder joint comprising a solder capture pad on a substrate having a circuit; and a lead containing or a lead free solder selected from the group comprising Sn—Ag—Cu solder, Sn—Cu solder and Sn—Ag solder adhered to the solder capture pad; the solder selected from the group comprising between 0.1 and 6.0 per cent by weight Zn. A solder joint, comprising a solder capture pad on a substrate having a circuit; and a Sn—Cu lead free solder adhered to the solder capture pad, the solder comprising between 0.1 and 6.0 % by weight Zn. Formation of voids at an interface between the solder and the solder capture pad is suppressed. A method for forming solder joints using the solders.
    Type: Application
    Filed: January 30, 2007
    Publication date: July 31, 2008
    Inventors: Peter A. Gruber, Donald W. Henderson, Sung K. Kang, Da-Yuan Shih
  • Publication number: 20080175939
    Abstract: A method for forming interconnects onto attachment points of a wafer includes the steps of providing a mold with a plurality of cavities having a predetermined shape, depositing a release agent on surfaces of the cavities, filling the cavities with an interconnect material to form the interconnects, removing the release agent from the mold, and attaching the interconnects to the attachment points of the wafer. An adhesive layer can optionally be deposited in addition to the release layer. The adhesive layer can be used, for example, to bond the chip to a package.
    Type: Application
    Filed: October 31, 2007
    Publication date: July 24, 2008
    Applicant: International Business Machines Corporation
    Inventors: David H. Danovitch, Mukta G. Farooq, Peter A. Gruber, John U. Knickerbocker, George R. Proto, Da-Yuan Shih
  • Patent number: 7399421
    Abstract: A wafer-scale apparatus and method is described for the automation of forming, aligning and attaching two-dimensional arrays of microoptic elements on semiconductor and other image display devices, backplanes, optoelectronic boards, and integrated optical systems. In an ordered fabrication sequence, a mold plate comprised of optically designed cavities is formed by reactive ion etching or alternative processes, optionally coated with a release material layer and filled with optically specified materials by an automated fluid-injection and defect-inspection subsystem. Optical alignment fiducials guide the disclosed transfer and attachment processes to achieve specified tolerances between the microoptic elements and corresponding optoelectronic devices and circuits.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: July 15, 2008
    Assignee: International Business Machines Corporation
    Inventors: Lawrence Jacobowitz, Stephen L. Buchwalter, Casimer DeCusatis, Peter A. Gruber, Da-Yuan Shih
  • Publication number: 20080164896
    Abstract: The present invention is directed to structures having a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads and the apparatus for use thereof and to methods of fabrication thereof. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
    Type: Application
    Filed: March 21, 2008
    Publication date: July 10, 2008
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Yun-Hsin Liao, Daniel Peter Morris, Da-Yuan Shih
  • Publication number: 20080165502
    Abstract: The present invention is a patterned metal thermal interface. In one embodiment a system for dissipating heat from a heat-generating device includes a heat sink having a first surface adapted for thermal coupling to a first surface of the heat generating device and a thermal interface having at least one patterned surface, the thermal interface being adapted to thermally couple the first surface of the heat sink to the first surface of the heat generating device. The patterned surface of the thermal interface allows the thermal interface to deform under compression between the heat sink and the heat generating device, leading to better conformity of the thermal interface to the surfaces of the heat sink and the heat generating device.
    Type: Application
    Filed: January 4, 2007
    Publication date: July 10, 2008
    Inventors: Bruce K. Furman, Sushumna Iruvanti, Paul A. Lauro, Yves C. Martin, Da Yuan Shih, Theodore G. Van Kessel, Wei Zou
  • Publication number: 20080157395
    Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting metallurgy including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 3, 2008
    Inventors: Luc Belanger, Stephen L. Buchwalter, Leena Paivikki Buchwalter, Ajay P. Giri, Jonathan H. Griffith, Donald W. Henderson, Sung Kwon Kang, Eric H. Laine, Christian Lavoie, Paul A. Lauro, Valerie Anne Oberson, Da-Yuan Shih, Kamalesh K. Srivastava, Michael J. Sullivan
  • Publication number: 20080132094
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080129320
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080129319
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080121879
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving mi array of wires disposed in the elastomer and in electrical contact with the space transformer.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 29, 2008
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080123310
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 29, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080116916
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080116915
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080117611
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080117613
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: February 1, 2008
    Publication date: May 22, 2008
    Applicant: International Business Machines Corporation
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080116914
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker
  • Publication number: 20080117612
    Abstract: The present invention is directed to a high density test probe which provides a means for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Maurice Heathcote Norcott, Da-Yuan Shih, George Frederick Walker