Patents by Inventor Dafna Beery

Dafna Beery has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190206933
    Abstract: According to one embodiment, a method includes forming, at a low temperature, a thin film transistor structure above a flexible substrate in a film thickness direction. The low temperature is less than about 200° C., and the thin film transistor structure includes a contact pad on a lower or upper surface thereof. The method also includes forming, at a high temperature, a perpendicular magnetic tunnel junction (pMTJ) structure above a rigid substrate. The high temperature is greater than about 200° C. The method also includes removing the rigid substrate from below the pMTJ structure and bonding, at the low temperature, the pMTJ structure to the thin film transistor structure using an adhesion layer. Other methods of forming flexible substrates for mounting pMTJs and systems thereof are described in accordance with more embodiments.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kuk-Hwan Kim, Marcin Gajek, Dafna Beery, Amitay Levi
  • Publication number: 20190206937
    Abstract: A method, according to one embodiment, includes: forming an annular cylindrical channel from a single block of electrically conductive material; forming an oxide layer over exposed surfaces of the annular cylindrical channel and exposed surfaces of the block of electrically conductive material; removing a portion of the oxide layer from an exterior base of the annular cylindrical channel, thereby forming a source contact recess which surrounds the base of the annular cylindrical channel; ion-implanting the exposed electrically conductive material substrate at a base of the source contact recess; and depositing a silicide material in the source contact recess, thereby forming a source contact tab.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Gian Sharma, Amitay Levi, Andrew J. Walker, Kuk-Hwan Kim, Dafna Beery
  • Publication number: 20190206461
    Abstract: A switching device, according to one embodiment, includes: a cylindrical pillar; an annular cylindrical oxide layer which encircles a portion of the cylindrical pillar; an annular cylindrical gate contact which encircles a portion of the annular cylindrical oxide layer; and a source contact which encircles a portion of the cylindrical pillar toward a first end of the cylindrical pillar. Other systems are also described in additional embodiments herein which provide various different switching devices having improved components including improved cylindrical gate contacts, improved source contacts, and/or improved drain contacts. These improved systems and components thereof may be implemented in vertical transistor structures which also include the aforementioned cylindrical pillar and cylindrical gate contact in comparison to conventional surface transistor structures.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Gian Sharma, Amitay Levi, Andrew J. Walker, Kuk-Hwan Kim, Dafna Beery
  • Publication number: 20190207098
    Abstract: According to one embodiment, an apparatus includes a channel layer positioned above a substrate in a film thickness direction, the channel layer including a lower channel layer positioned below an upper channel layer in the film thickness direction, a gate dielectric layer positioned on sides of the channel layer, a gate layer positioned on sides of the gate dielectric layer, and an electrode layer positioned above an upper portion of the channel layer in the film thickness direction. Sides of the electrode layer extend beyond sides of the channel layer in an element thickness direction perpendicular to the film thickness direction. Other systems and methods of manufacturing thereof are described in accordance with more embodiments.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kuk-Hwan Kim, Dafna Beery, Amitay Levi, Andrew J. Walker
  • Publication number: 20190206938
    Abstract: A switching device, according to one embodiment, includes: a cylindrical pillar gate contact, an annular cylindrical channel which encircles a portion of the cylindrical pillar gate contact, an annular cylindrical oxide layer which encircles a portion of the annular cylindrical channel, and a source contact tab which encircles a portion of the annular cylindrical channel toward a first end of the annular cylindrical channel. Other systems are also described in additional embodiments herein which provide various different switching devices having improved components including improved annular cylindrical channel structures, improved source contacts, and/or improved cylindrical pillar gate contacts. These improved systems and components thereof may be implemented in vertical annular transistor structures in comparison to conventional surface transistor structures.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Gian Sharma, Amitay Levi, Andrew J. Walker, Kuk-Hwan Kim, Dafna Beery
  • Publication number: 20190206934
    Abstract: According to one embodiment, an apparatus includes: a substrate, an array of 3D structures, where each 3D structure includes a source region having a first conductivity, a series of layers positioned in a vertical direction, a channel material on a surface of at least one sidewall of each 3D structure, and a gate dielectric material on the channel material. The series of layers includes a dielectric layer positioned above the substrate, a plurality of a set of MTJ layers positioned above the dielectric layer, and a buffer layer positioned in between the dielectric layer and each set of MTJ layers thereof. The magnetic memory device further includes an isolation region positioned between the 3D structures and at least one gate region positioned above the isolation region, where each gate region is coupled to at least one sidewall of each 3D structure.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kuk-Hwan Kim, Dafna Beery, Amitay Levi, Andrew J. Walker
  • Publication number: 20190206463
    Abstract: A magnetic device, according to one approach, includes: a plurality of perpendicular magnetic tunnel junction (p-MTJ) cells, each p-MTJ cell having a transistor and a magnetic tunnel junction (MTJ) sensor. Moreover, each of the transistors includes a drain terminal, a source terminal, and a gate terminal. The magnetic device also includes: a first common word line coupled to the gate terminal of each transistor in a first subset of the plurality of p-MTJ cells, a first common bit line coupled to a first end of each MTJ sensor in a second subset of the plurality of p-MTJ cells, and a first common source line coupled to the drain terminal of each transistor in the first subset. A second end of each of the MTJ sensors in the second subset is coupled to the source terminal of each respective transistor in the second subset.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kuk-Hwan Kim, Dafna Beery, Gian Sharma, Marcin Gajek, Kadriye Deniz Bozdag, Girish Jagtiani, Eric Michael Ryan, Michail Tzoufras, Amitay Levi, Andrew J. Walker
  • Publication number: 20190206935
    Abstract: According to one embodiment, an apparatus includes a bottom electrode layer positioned above a substrate in a film thickness direction, a source layer positioned above the bottom electrode layer in the film thickness direction, an impact ionization channel (i-channel) layer positioned above the source layer in the film thickness direction, a drain layer positioned above the i-channel layer in the film thickness direction, an upper electrode layer positioned above the drain layer in the film thickness direction that forms a stack that includes the bottom electrode layer, the source layer, the i-channel layer, the drain layer, and the upper electrode layer, and a gate layer positioned on sides of the i-channel layer along a plane perpendicular to the film thickness direction in an element width direction. The gate layer is positioned closer to the drain layer than the source layer. Other apparatuses are described in accordance with more embodiments.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kuk-Hwan Kim, Dafna Beery, Amitay Levi, Andrew J. Walker
  • Publication number: 20190207081
    Abstract: A method of forming a cylindrical vertical transistor; the method, according to one embodiment, includes: forming a cylindrical pillar from a single block of silicon, forming an oxide layer over an exterior of the cylindrical pillar and exposed surfaces of the block of silicon, coating the oxide layer with a spin-on-glass (SOG), depositing a source mask over a majority of the SOG coating, and removing a portion of the SOG coating and underlying oxide layer, where the portion removed is defined by the source mask. Other systems and methods are also described in additional embodiments herein which provide various different improved processes of forming the cylindrical gate contacts, the source contacts, and/or the drain contacts for vertical transistor structures which also include the aforementioned cylindrical pillar channel structures and cylindrical gate in comparison to conventional surface transistor structures.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Gian Sharma, Amitay Levi, Andrew J. Walker, Kuk-Hwan Kim, Dafna Beery
  • Publication number: 20190206716
    Abstract: A method of forming a transistor, according to one embodiment, includes: forming an doped material, depositing an oxide layer on the doped material, depositing a conducting layer on the oxide layer, patterning the conducting layer to form at least two word lines, depositing a nitride layer above the at least two word lines, defining at least two hole regions, at each of the defined hole regions, etching down to the doped material through each of the respective word lines, thereby creating at least two holes, depositing a gate dielectric layer on the nitride layer and in the at least two holes, depositing a protective layer on the gate dielectric layer, etching in each of the at least two holes down to the doped material, and removing a remainder of the protective layer.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Kuk-Hwan Kim, Dafna Beery, Amitay Levi, Andrew J. Walker
  • Patent number: 10333063
    Abstract: According to one embodiment, a method includes forming an etch-stop layer above a substrate, forming a matrix layer above the etch-stop layer, forming a set of pillars above the matrix layer, the set of pillars having a predefined spacing therebetween along a plane in an element width direction and an element depth direction, the plane being normal to a film thickness direction, forming a functionalization layer above the pillars, along sides of the pillars, and above the matrix layer, forming first diblock copolymer layers above the functionalization layer, the first diblock copolymer layers self-segregating into a first polymer and a second polymer in a first pattern, removing the first polymer from the first diblock copolymer layers to create a first mask layer, and removing portions of the matrix layer to expose portions of the etch-stop layer positioned therebelow and create a second pattern in the matrix layer.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: June 25, 2019
    Assignee: SPIN MEMORY, INC.
    Inventors: Kuk-Hwan Kim, Dafna Beery, Amitay Levi, Andrew J. Walker
  • Patent number: 10243021
    Abstract: According to one embodiment, a method includes forming a bottom electrode layer above a substrate in a film thickness direction, forming a source layer above the bottom electrode layer in the film thickness direction, forming an impact ionization channel (i-channel) layer above the source layer in the film thickness direction, forming a drain layer above the i-channel layer in the film thickness direction, forming an upper electrode layer above the drain layer in the film thickness direction to form a stack that includes the bottom electrode layer, the source layer, the i-channel layer, the drain layer, and the upper electrode layer, and forming a gate layer positioned on sides of the i-channel layer along a plane perpendicular to the film thickness direction in an element width direction. The gate layer is formed in a position closer to the drain layer than the source layer.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: March 26, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Kuk-Hwan Kim, Dafna Beery, Amitay Levi, Andrew J. Walker
  • Patent number: 10186551
    Abstract: In one embodiment, an apparatus includes lower electrodes positioned below a surface of a substrate, the substrate including crystalline Si, a plurality of strap regions positioned above the lower electrodes and below sets of pillars of Si, the pillars rising above the substrate, the sets of pillars being aligned in a first direction along a plane perpendicular to a film thickness direction, and the strap regions extending above a surface of the substrate, silicide junctions positioned between each of the strap regions and a corresponding lower electrode positioned therebelow, upper electrodes positioned above each of the pillars, gate dielectric layers positioned on sides of the pillars to a height greater than a lower edge of the upper electrodes, and gate layers positioned on sides of the gate dielectric layers in a second direction along the plane and perpendicular to the first direction that transverse a plurality of sets of pillars.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: January 22, 2019
    Assignee: Spin Transfer Technologies, Inc.
    Inventors: Kuk-Hwan Kim, Dafna Beery, Gian Sharma, Amitay Levi, Andrew J. Walker
  • Patent number: 9059400
    Abstract: A manufacturing method to form a memory device includes forming a hard mask on a magnetic stack. A first magnetic stack etch is performed to form exposed magnetic layers. A liner is applied to the exposed magnetic layers to form protected magnetic layers. A second magnetic stack etch forms a magnetic random access memory (MRAM) cell, where the liner prevents shunting between the protected magnetic layers.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: June 16, 2015
    Assignee: Crocus Technology Inc.
    Inventors: Dafna Beery, Jason Reid, Jong Shin, Jean Pierre Nozieres, Olivier Joubert
  • Patent number: 8962493
    Abstract: A manufacturing method to form a memory device includes: (1) forming a dielectric layer adjacent to a magnetic stack; (2) forming an opening in the dielectric layer; (3) applying a hard mask material adjacent to the dielectric layer to form a pillar disposed in the opening of the dielectric layer; and (4) using the pillar as a hard mask, patterning the magnetic stack to form a MRAM cell.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: February 24, 2015
    Assignee: Crocus Technology Inc.
    Inventors: Amitay Levi, Dafna Beery
  • Publication number: 20140252516
    Abstract: A manufacturing method to form a memory device includes forming a hard mask on a magnetic stack. A first magnetic stack etch is performed to form exposed magnetic layers. A liner is applied to the exposed magnetic layers to form protected magnetic layers. A second magnetic stack etch forms a magnetic random access memory (MRAM) cell, where the liner prevents shunting between the protected magnetic layers.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Applicant: CROCUS TECHNOLOGY INC.
    Inventors: Dafna Beery, Jason Reid, Jong Shin, Jean Pierre Nozieres, Olivier Joubert
  • Publication number: 20120146166
    Abstract: A manufacturing method to form a memory device includes: (1) forming a dielectric layer adjacent to a magnetic stack; (2) forming an opening in the dielectric layer; (3) applying a hard mask material adjacent to the dielectric layer to form a pillar disposed in the opening of the dielectric layer; and (4) using the pillar as a hard mask, patterning the magnetic stack to form a MRAM cell.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 14, 2012
    Applicant: CROCUS TECHNOLOGIES
    Inventors: AMITAY LEVI, DAFNA BEERY
  • Patent number: 6774033
    Abstract: In one embodiment, a local interconnect layer in an integrated circuit is formed by depositing a first film over an oxide layer and depositing a second film over the first film. The first film may comprise titanium nitride, while the second film may comprise tungsten, for example. The first film and the second film may be deposited in-situ by sputtering. The second film may be etched using the first film as an etch stop, and the first film may be etched using the oxide layer as an etch stop.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: August 10, 2004
    Assignee: Cypress Semiconductor Corporation
    Inventors: Mira Ben-Tzur, Dafna Beery, Gorley L. Lau, Krishnaswamy Ramkumar