Patents by Inventor Daigoro Mori

Daigoro Mori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7536786
    Abstract: A hydrogen storage tank (11) and method for replacing an open-close valve that prevents oxidizing of a hydrogen absorption alloy (MH) accommodated in a tank body (12) when replacing an open-close valve (30) connected to a hydrogen supply-release pipe (28) extending from a tank body (12). The hydrogen storage tank (11) includes a tank body (12) accommodating hydrogen absorption material (MH), a hydrogen supply-release pipe (28) for supplying hydrogen gas to the tank body (12) and releasing hydrogen gas from the tank body (12), and a gas supply pipe (24) for supply inert gas to the tank body (12) and arranged independently from the hydrogen supply-release pipe (28). The method for replacing an open-close valve (30) connected to the hydrogen supply-release pipe (28) includes supplying inert gas through a gas supply pipe (24) to the tank body (12) and replacing the open-close valve in a state in which inert gas can be released from the hydrogen supply-release pipe (28).
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: May 26, 2009
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Toyota Jidosha Kabushiki Kaisha
    Inventors: Keiji Toh, Daigoro Mori
  • Publication number: 20090000963
    Abstract: A manufacturing method of a hydrogen storage tank stored with a hydrogen gas by including built-in hydrogen-occlusion alloys, has a stacking step of stacking plate members building up heat transfer fins, an arranging step of disposing the hydrogen-occlusion alloys between the neighboring plate members so as to form an area in which to dispose the hydrogen-occlusion alloys and an area in which to dispose none of the hydrogen-occlusion alloys, and a pressurizing step of forming air spaces sectioned by the plate members building up the heat transfer fins and containing the previously built-in hydrogen-occlusion alloys in a way that gets a part of the plate members deformed by pressurizing the plate members in a stacking direction thereof so as to restrict migrations of the hydrogen-occlusion alloys disposed in the arranging step.
    Type: Application
    Filed: June 17, 2008
    Publication date: January 1, 2009
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Daigoro MORI, Keiji TOH, Katsuyoshi FUJITA
  • Publication number: 20080250804
    Abstract: A hydrogen fuel automobile has a heat medium passage through which a heat medium which can exchange heat with a drive portion and can be supplied to a heat medium pipe for a hydrogen tank flows. An air cooling apparatus has a compressor for compressing a refrigerant gas, a condenser, an evaporator and a refrigerant circuit. The hydrogen fuel automobile is provided with a bypass passage which branches from the refrigerant circuit so that expanded refrigerant liquid detours the evaporator so as to be drawn into the compressor. A switch portion can switch between a state where the refrigerant liquid passes through the evaporator so as to be drawn into the compressor and a state where the refrigerant liquid detours the evaporator so as to flow through the bypass passage. The hydrogen storage material cooling portion cools the hydrogen storage material in the hydrogen tank using the refrigerant liquid that flows through the bypass passage.
    Type: Application
    Filed: November 17, 2005
    Publication date: October 16, 2008
    Inventors: Hidehito Kubo, Daigoro Mori
  • Publication number: 20080210185
    Abstract: A hydrogen station includes gas storage equipment for storing hydrogen, a dispenser for charging hydrogen gas supplied from the gas storage equipment into a hydrogen tank of a vehicle, and a blower. When charging hydrogen, the blower blows air towards a radiator of the vehicle parked at a predetermined vehicle parking area of the hydrogen station. The current flow of the blower is adjusted in accordance with the heat load on the radiator.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 4, 2008
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hidehito KUBO, Yoshihiro ISOGAI, Daigoro MORI
  • Patent number: 7418782
    Abstract: The technique of the invention manufactures a gas storage tank, which includes a gas absorbent/adsorbent and is capable of storing a high-pressure gas. The manufacturing process of a hydrogen storage tank first assembles a heat exchanger unit and packs the particles of hydrogen storage alloy into the heat exchanger unit. The manufacturing process then blocks hydrogen storage alloy filling holes used for packing the hydrogen storage alloy in the heat exchanger unit and attaches a detachable cover member to a hydrogen inlet. The manufacturing process subsequently locates the heat exchange unit filled with the hydrogen storage alloy in a cylindrical tank and narrows both ends of the tank to form joint openings. The manufacturing process then heat-treating the tank under water cooling and detaches the cover member. The manufacturing process attaches joint assemblies to the joint openings and forms a reinforcement layer around the outer circumference of the tank to complete the hydrogen storage tank.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: September 2, 2008
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Masahiko Kimbara, Daigoro Mori, Takehiro Nito, Hidehito Kubo, Akiko Kumano, Makoto Tsuzuki, Yoshihiro Isogai
  • Publication number: 20080203101
    Abstract: The technique of the invention manufactures a gas storage tank, which includes a gas absorbent/adsorbent and is capable of storing a high-pressure gas. The manufacturing process of a hydrogen storage tank first assembles a heat exchanger unit and packs the particles of hydrogen storage alloy into the heat exchanger unit. The manufacturing process then blocks hydrogen storage alloy filling holes used for packing the hydrogen storage alloy in the heat exchanger unit and attaches a detachable cover member to a hydrogen inlet. The manufacturing process subsequently locates the heat exchange unit filled with the hydrogen storage alloy in a cylindrical tank and narrows both ends of the tank to form joint openings. The manufacturing process then heat-treating the tank under water cooling and detaches the cover member. The manufacturing process attaches joint assemblies to the joint openings and forms a reinforcement layer around the outer circumference of the tank to complete the hydrogen storage tank.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 28, 2008
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Masahiko Kimbara, Daigoro Mori, Takehiro Nito, Hidehito Kubo, Akiko Kumano, Makoto Tsuzuki, Yoshihiro Isogai
  • Publication number: 20080115362
    Abstract: A hydrogen storage tank (11) and method for replacing an open-close valve that prevents oxidizing of a hydrogen absorption alloy (MH) accommodated in a tank body (12) when replacing an open-close valve (30) connected to a hydrogen supply-release pipe (28) extending from a tank body (12). The hydrogen storage tank (11) includes a tank body (12) accommodating hydrogen absorption material (MH), a hydrogen supply-release pipe (28) for supplying hydrogen gas to the tank body (12) and releasing hydrogen gas from the tank body (12), and a gas supply pipe (24) for supply inert gas to the tank body (12) and arranged independently from the hydrogen supply-release pipe (28). The method for replacing an open-close valve (30) connected to the hydrogen supply-release pipe (28) includes supplying inert gas through a gas supply pipe (24) to the tank body (12) and replacing the open-close valve in a state in which inert gas can be released from the hydrogen supply-release pipe (28).
    Type: Application
    Filed: October 13, 2005
    Publication date: May 22, 2008
    Inventors: Keiji Toh, Daigoro Mori
  • Patent number: 7363949
    Abstract: A hydrogen station includes gas storage equipment for storing hydrogen, a dispenser for charging hydrogen gas supplied from the gas storage equipment into a hydrogen tank of a vehicle, and a blower. When charging hydrogen, the blower blows air towards a radiator of the vehicle parked at a predetermined vehicle parking area of the hydrogen station. The current flow of the blower is adjusted in accordance with the heat load on the radiator.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 29, 2008
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidehito Kubo, Yoshihiro Isogai, Daigoro Mori
  • Publication number: 20080066887
    Abstract: A pressure tank includes a liner separated into a cap and a main body. A shell covers the outer surface of the liner. The shell is formed of a fiber reinforced plastic. A heat exchanger is arranged in the liner. A header is connected to the heat exchanger. The heat exchanger is supported on the liner by fastening the header to the cap or the main body.
    Type: Application
    Filed: October 30, 2007
    Publication date: March 20, 2008
    Inventors: Keiji Toh, Hidehito Kubo, Katsuyoshi Fujita, Akiko Kumano, Masahiko Kimbara, Yoshihiro Isogai, Daigoro Mori
  • Publication number: 20080044704
    Abstract: In a fuel cell system 10, hydrogen is supplied to a fuel cell 11 from a hydrogen storage tank 12 provided with a hydrogen-absorbing alloy MH and a heat exchanger 18. In this process, the pressure in the hydrogen storage tank 12 is held at a level equal to or higher than a predetermined pressure by using a heat medium that cooled the fuel cell 11. When the temperature of the hydrogen supplied to the fuel cell 11 is at the predetermined temperature or below, a control device 30 controls, based on a detection signal provided from a temperature sensor 23, first to fourth electromagnetic valves V1 to V4 so that the heat medium after having cooled the fuel cell 11 is supplied to the heat exchanger 18.
    Type: Application
    Filed: December 22, 2005
    Publication date: February 21, 2008
    Inventors: Hidehito Kubo, Daigoro Mori
  • Patent number: 7326281
    Abstract: A tank main body accommodates a heat exchanger including a heating medium pipe. A plurality of heat exchanger fins are coupled to the heating medium pipe to divide the interior of the tank main body into a plurality of spaces. A hydrogen storage alloy is provided in the spaces. An absorption portion is provided in the spaces. The absorption portion is deformed by a force generated by expansion of the hydrogen storage alloy, thereby absorbing the force. Therefore, the heat exchanger is prevented from being deformed or damaged even if the bulk density of the hydrogen storage alloy is reduced due to expansion and pulverization of the hydrogen storage alloy.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: February 5, 2008
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuyoshi Fujita, Hidehito Kubo, Masahiko Kimbara, Daigoro Mori
  • Patent number: 7322398
    Abstract: A pressure tank includes a liner separated into a cap and a main body. A shell covers the outer surface of the liner. The shell is formed of a fiber reinforced plastic. A heat exchanger is arranged in the liner. A header is connected to the heat exchanger. The heat exchanger is supported on the liner by fastening the header to the cap or the main body.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: January 29, 2008
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Keiji Toh, Hidehito Kubo, Katsuyoshi Fujita, Akiko Kumano, Masahiko Kimbara, Yoshihiro Isogai, Daigoro Mori
  • Patent number: 7240549
    Abstract: A control unit 40 acquires acceleration ? sensed by an acceleration sensor 31, and if the control unit 40 determines that acceleration ? does not equal zero, the control unit 40 again acquires acceleration ?. In the event that the control unit 40 decides that acceleration ? equals zero, the control unit 40 acquires the weight M sensed by the weight sensor 30. The control unit 40 continues sampling of weight M until a predetermined sampling period has elapsed. Once the sampling period has elapsed, the control unit 40 calculates the average of weight M obtained through sampling, and uses the calculated average and a map to determine hydrogen amount.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: July 10, 2007
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Masahiko Kimbara, Daigoro Mori, Takehiro Nito, Hidehito Kubo, Makoto Tsuzuki
  • Publication number: 20070062672
    Abstract: A pressure tank includes a liner separated into a cap and a main body. A shell covers the outer surface of the liner. The shell is formed of a fiber reinforced plastic. A heat exchanger is arranged in the liner. A header is connected to the heat exchanger. The heat exchanger is supported on the liner by fastening the header to the cap or the main body.
    Type: Application
    Filed: November 9, 2006
    Publication date: March 22, 2007
    Inventors: Keiji Toh, Hidehito Kubo, Katsuyoshi Fujita, Akiko Kumano, Masahiko Kimbara, Yoshihiro Isogai, Daigoro Mori
  • Patent number: 7169214
    Abstract: A high pressure tank has a cylindrical liner and a fiber reinforced plastic layer which covers the outer surface of the liner. At least one end of the liner is separable. The liner includes a cylindrical liner body and a lid. An O-ring is located between the contact surfaces of the liner body and the lid in the circumferential direction. Each contact surface has a seal surface which contacts the O-ring. One of the liner body and the lid has a deformable portion which deforms toward the seal surfaces. The structure can securely seal the separated portions of the liner when the high pressure tank is in a high pressure state.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: January 30, 2007
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidehito Kubo, Makoto Tsuzuki, Keiji Toh, Akiko Kumano, Daigoro Mori, Masahiko Kimbara
  • Patent number: 7152665
    Abstract: A pressure tank includes a liner separated into a cap and a main body. A shell covers the outer surface of the liner. The shell is formed of a fiber reinforced plastic. A heat exchanger is arranged in the liner. A header is connected to the heat exchanger. The heat exchanger is supported on the liner by fastening the header to the cap or the main body.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: December 26, 2006
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Keiji Toh, Hidehito Kubo, Katsuyoshi Fujita, Akiko Kumano, Masahiko Kimbara, Yoshihiro Isogai, Daigoro Mori
  • Patent number: 7115159
    Abstract: In a hydrogen storing tank (solid filling tank) in which a hydrogen absorbing alloy (solid) is filled, a heat exchanger for executing heat exchange with the hydrogen absorbing alloy is constructed by laminating alternately first heat-transferring fins formed in corrugated plate shape and second heat-transferring fins formed in flat plate shape. Partitioned portions that are partitioned by the first heat-transferring fins and the second heat-transferring fins restrict movement of hydrogen absorbing alloy powders (MH powders) in a subsiding direction. Therefore, movement of the MH powders can surely be prevented by not using members that has no concern with the heat exchange and reduces an amount of filled MH powders and a volume in which the heat exchanger is provided.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: October 3, 2006
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Katsuyoshi Fujita, Hidehito Kubo, Keiji Toh, Akiko Kumano, Daigoro Mori
  • Patent number: 7112239
    Abstract: A hydrogen storage apparatus that includes multiple gas storage tanks that each house a storing/adsorbing material and through the interior of which a fluid travels is provided. The gas storage apparatus 10 includes roughly cylindrical gas storage tanks 20 that house hydrogen-storing alloy. The multiple gas storage tanks 20 are disposed longitudinally parallel to each other in an ordered fashion such that roughly triangular prism-shaped empty spaces are formed between multiple adjacent hydrogen storage tanks 20. Coolant paths through which coolant flows are formed in these roughly triangular prism-shaped empty spaces. These coolant paths are thermally connected to the hydrogen-storing alloy in the gas storage tanks 20 via constituent members of the gas storage tanks 20 and via heat transfer plates 28 disposed on the gas storage tanks 20.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: September 26, 2006
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Masahiko Kimbara, Daigoro Mori, Takehiro Nito, Hidehito Kubo, Keiji Toh
  • Publication number: 20060180235
    Abstract: A hydrogen station includes gas storage equipment for storing hydrogen, a dispenser for charging hydrogen gas supplied from the gas storage equipment into a hydrogen tank of a vehicle, and a blower. When charging hydrogen, the blower blows air towards a radiator of the vehicle parked at a predetermined vehicle parking area of the hydrogen station. The current flow of the blower is adjusted in accordance with the heat load on the radiator.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 17, 2006
    Inventors: Hidehito Kubo, Yoshihiro Isogai, Daigoro Mori
  • Patent number: 7040109
    Abstract: In a fuel cell system 10, a refrigerant channel 70 that circulates refrigerant is configured to exchange heat between the refrigerant and each of a fuel cell 30, a hydrogen storage tank 20 having a hydrogen storage alloy, and a radiator 50. The hydrogen storage alloy has a higher absorption temperature at which absorption and release become equilibrium under the predetermined hydrogen pressure than the temperature of the fuel cell 30 in a steady-state operation. The refrigerant after cooling the fuel cell carries the heat generated by hydrogen absorption to the hydrogen storage alloy during storing from the tank 20 and facilitates absorption of hydrogen.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: May 9, 2006
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Masahiko Kimbara, Daigoro Mori, Takehiro Nito, Keiji Toh, Hidehito Kubo