Patents by Inventor Daihua Zhang

Daihua Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220293435
    Abstract: A LED display fabrication tool includes first and second dispensing chambers to deliver first and second color conversion precursors onto a workpiece for fabrication of a light emitting diode (LED) displays, first and second curing stations to cure the workpiece to form first and second color conversion layers over a first and second set of LEDs on the workpiece, and first and second washing/drying chambers to remove uncured portions of the first and second color conversion precursors from the workpiece and then dry the workpiece. Each of the chambers is independently sealable. A controller controls a workpiece transport system to move the workpiece sequentially between the chambers.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 15, 2022
    Inventors: Hou T. Ng, Daihua Zhang, Nag B. Patibandla
  • Patent number: 11367643
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, printing one or more alignment markers by printing the liquid precursor material outside the support structure and curing the liquid precursor material, positioning a substrate within the support structure, performing a registration of the substrate using the one or more alignment markers, and printing one or more device structures on the substrate while registered by printing and curing the liquid precursor material.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: June 21, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20220189933
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a cover layer spanning the LEDs and having a plurality of recesses, and first and second color conversion layers. Each recess of the plurality of recesses positioned over a corresponding micro-LED from the plurality of micro-LEDs, the first color conversion layer is in each recess over a first plurality of LEDs to convert the illumination from the first plurality of LEDs to light of a first color, and the second color conversion layer is in each recess over a second plurality of LEDs to convert the illumination from the second plurality of LEDs to light of a different second color.
    Type: Application
    Filed: January 28, 2022
    Publication date: June 16, 2022
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20220152724
    Abstract: The present disclosure generally relates to a method and apparatus for forming a substrate having a graduated refractive index. A method of forming a waveguide structure includes expelling plasma from an applicator having a head toward a plurality of grating structures formed on a substrate. The plasma is formed in the head at atmospheric pressure. The method further includes changing a depth of the plurality of grating structures with the plasma by removing grating material from the plurality of grating structures.
    Type: Application
    Filed: November 17, 2021
    Publication date: May 19, 2022
    Inventors: Kang LUO, Ludovic GODET, Daihua ZHANG, Nai-Wen PI, Jinrui GUO, Rami HOURANI
  • Patent number: 11329003
    Abstract: A method of printing structures on a reconstructed wafer includes positioning a plurality of semiconductor dies on a support substrate, anchoring the plurality of semiconductor dies to the support substrate by printing a plurality of anchors that extend across edges of the semiconductor dies onto the support substrate and thus form a reconstructed wafer, and printing one or more device structures on the pluralities of semiconductor dies while anchored on the support substrate. The printing operations include ejecting droplets of a liquid precursor material and curing the liquid precursor material.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: May 10, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Patent number: 11322381
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, positioning a substrate within the support structure, printing one or more anchors on the substrate and the support structure by printing and curing the liquid precursor material to secure the substrate to the support structure, and printing one or more device structures on the substrate while anchored by printing and curing the liquid precursor material.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: May 3, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20220111579
    Abstract: A method of forming a three dimensional object includes dispensing droplets of an electromagnetic energy curable liquid onto a surface to form a plurality of layers of the three dimensional object in liquid form, wherein each droplet forms a layer of liquid on the surface which is larger than a minimum feature size of a structure to be formed by curing the curable liquid, and directing electromagnetic energy capable of curing the liquid and having a beam width intersecting the layer of liquid which is at least as small as the smallest feature of a structure to be formed in the curable liquid.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 14, 2022
    Inventors: Daihua ZHANG, Uma SRIDHAR, Hou T. NG, Sivapackia GANAPATHIAPPAN, Nag B. PATIBANDLA
  • Publication number: 20220091314
    Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing optical devices having optical device structures with at least one of varying depths or refractive indices across the surface of a substrate. According to certain embodiments, an inkjet process is used to deposit a volumetrically variable optical device that is etched to form a diffractive optic element (DOE). Volumetrically variable can relate to the thickness of the optical device, or the relative volume of two or more diffractive materials deposited in combination. According to other embodiments, a single-profile DOE is deposited on a substrate and an inkjet process deposits a volumetrically variable organic material over the DOE. The DOE and organic material are etched to modify the profile of the structure, after which the organic material is removed, leaving the modified-profile DOE.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 24, 2022
    Inventors: Kang Luo, Xiaopei Deng, Daihua Zhang, Ludovic Godet
  • Publication number: 20220069173
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20220035251
    Abstract: A method of forming a three dimensional feature inwardly of a surface of a material includes providing a droplet dispenser including an outlet configured to dispense discrete droplets of a liquid material having a reactant therein capable of reacting with, and thereby removing, portions of the material layer with which the droplets come into contact, providing a support configured support the material thereon, the support, and the droplet dispenser, movable with respect to one another, such that the outlet of the droplet dispenser is positionable over different discrete areas of the surface of the material, and positioning the surface of the material under the droplet dispenser, and dispensing droplets to discrete portions of the surface of the material in a desired area thereof, to remove at least a portion of the material in the desired area and thereby form a three dimensional recess inwardly of the surface of the material.
    Type: Application
    Filed: September 25, 2020
    Publication date: February 3, 2022
    Inventors: Jinrui GUO, Ludovic GODET, Daihua ZHANG, Kang LUO, Rami HOURANI
  • Patent number: 11239213
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid over a display having an array of LEDs disposed below a cover layer. The cover has an outer surface with a plurality of recesses, and the photo-curable fluid fills the recesses. The photo-curable fluid includes a color conversion agent. A plurality of LEDs in the array are activated to illuminate and cure the photo-curable fluid to form a color conversion layer in the recesses over the activated LEDs. This layer will convert light from these LEDs to light of a first color. An uncured remainder of the photo-curable fluid is removed. Then the process is repeated with a different photo-curable fluid having a different color conversion agent and a different plurality of LEDs. This forms a second color conversion layer in different plurality of recesses to convert light from these LEDs to light of a second color.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: February 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20220029068
    Abstract: A photocurable composition includes a nanomaterial selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The photocurable composition further includes one or more (meth)acrylate monomers, a thiol crosslinker, and a photoinitiator that initiates polymerization of the one or more (meth)acrylate monomers in response to absorption of radiation in the second wavelength band.
    Type: Application
    Filed: July 20, 2021
    Publication date: January 27, 2022
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Daihua Zhang, Hou T. Ng, Nag B. Patibandla
  • Publication number: 20220026409
    Abstract: The disclosure provides a method and a system for predicting disinfection by-products in drinking water. The method includes: acquiring water age prediction data of the drinking water to be predicted and water quality data of the drinking water to be predicted; inputting the water age prediction data and the water quality data into an adaptive genetic BP neural network model for predicting the disinfection by-products in the drinking water to obtain prediction values of the disinfection by-products in the drinking water. The disinfection by-products in a water supply pipe network can be predicted efficiently and economically by using the method and the system for predicting the disinfection by-products in the drinking water provided by the disclosure.
    Type: Application
    Filed: October 21, 2020
    Publication date: January 27, 2022
    Applicant: Jilin Jianzhu University
    Inventors: Yingzi LIN, Gen LIU, Gaoqi WANG, Daihua ZHANG, Hao YANG, Yuhang WEI, Wanqing LIU
  • Publication number: 20220016708
    Abstract: Methods and systems for additive manufacturing can include a modular spreader unit including multiple spreaders that collectively span the width of a large build area. The spreaders can be arranged in offset rows so that spreaders in a second row cover gaps between spreaders in a first row. The spreaders can be secured with quick release mechanisms for rapid replacement and adjustment during service intervals.
    Type: Application
    Filed: July 14, 2021
    Publication date: January 20, 2022
    Inventors: Hou T. Ng, Daihua Zhang, Nag B. Patibandla
  • Publication number: 20220017699
    Abstract: An implementation described herein provides a binder ink mixture for 3D printing of ceramic parts in a binder jet process. The binder ink mixture includes a molecular space filler and a free radical initiator.
    Type: Application
    Filed: July 20, 2020
    Publication date: January 20, 2022
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Daihua Zhang, Hou T. Ng, Nag B. Patibandla
  • Publication number: 20210358742
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a first color conversion layer over each of a first plurality of light emitting diodes, a second color conversion layer over each of a second plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array. The micro-LEDs of the array are configured to generate illumination of the same wavelength range, the first color conversion layer converts the illumination to light of a first color, and the second color conversion layer converts the illumination to light of a different second color.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11094530
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid that includes a color conversion agent over a display having a backplane and an array of light emitting diodes electrically integrated with backplane circuitry of the backplane, activating a plurality of light emitting diodes in the array of light emitting diodes to illuminate and cure the first photo-curable fluid to form a color conversion layer over each of the first plurality of light emitting diodes to convert light from the plurality of light emitting diodes to light of a first color, and removing an uncured remainder of the first photo-curable fluid. This process is repeated with a fluid having different color conversion components for another color.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: August 17, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11090724
    Abstract: An additive manufacturing apparatus has a platform, one or more supports positioned above the platform, an actuator coupled to at least one of the platform and the one or more supports and configured to create relative motion therebetween such that the one or more supports scan across the platform, a first dispenser system configured dispense a plurality of successive layers of powder onto a build area supported by the platform, a second dispenser system configured to dispense a binder material onto the build area, and an energy source configured to emit radiation toward the platform so as to solidify the binder material. The first dispenser system includes a first powder dispenser that is attached to and moves with a first support from the one or more supports and is configured to selectively dispense a first powder onto the build area.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 17, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Nag B. Patibandla, Daihua Zhang
  • Patent number: 11007570
    Abstract: An additive manufacturing apparatus includes a platform, one or more supports positioned above the platform, an actuator, a first dispenser system configured dispense a plurality of successive layers of powder onto a build area supported by the platform, a first binder material dispenser configured to selectively dispense a first binder material on a voxel-by-voxel basis to an uppermost layer of powder in the build area, and an energy source configured to emit radiation toward the platform so as to solidify the binder material. The first dispenser system includes a first powder dispenser that is attached to and moves with a first support from the one or more supports and is configured to selectively dispense a first powder onto the build area, and a second powder dispenser that is configured to selectively dispense the second powder onto the build area.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: May 18, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Hou T. Ng, Nag B. Patibandla, Daihua Zhang
  • Publication number: 20210054222
    Abstract: A formulation, system, and method for additive manufacturing of a polishing pad. The formulation includes monomer, dispersant, and nanoparticles. A method of preparing the formulation includes adding a dispersant that is a polyester derivative to monomer, adding metal-oxide nanoparticles to the monomer, and subjecting the monomer having the nanoparticles and dispersant to sonication to disperse the nanoparticles in the monomer.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 25, 2021
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Daihua Zhang, Uma Sridhar, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan