Patents by Inventor Daiki Yamada

Daiki Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7485511
    Abstract: An object of the present invention is to provide a structure of a thin film circuit portion and a method for manufacturing a thin film circuit portion by which an electrode for connecting to an external portion can be easily formed under a thin film circuit. A stacked body including a first insulating film, a thin film circuit formed over one surface of the first insulating film, a second insulating film formed over the thin film circuit, an electrode formed over the second insulating film, and a resin film formed over the electrode, is formed. A conductive film is formed adjacent to the other surface of the first insulating film of the stacked body to be overlapped with the electrode. The conductive film is irradiated with a laser.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: February 3, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daiki Yamada, Yoshitaka Dozen, Eiji Sugiyama, Hidekazu Takahashi
  • Patent number: 7485838
    Abstract: The present invention provides a photoelectric conversion device capable of detecting light from weak light to strong light and relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer; an amplifier circuit including a transistor; and a switch, where the photodiode and the amplifier circuit are electrically connected to each other by the switch when intensity of entering light is lower than predetermined intensity so that a photoelectric current is amplified by the amplifier circuit to be outputted, and the photodiode and part or all of the amplifier circuits are electrically disconnected by the switch so that a photoelectric current is reduced in an amplification factor to be outputted. According to such a photoelectric conversion device, light from weak light to strong light can be detected.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: February 3, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Tatsuya Arao, Atsushi Hirose, Yuusuke Sugawara, Naoto Kusumoto, Daiki Yamada, Hidekazu Takahashi
  • Publication number: 20080265351
    Abstract: In fabrication of a semiconductor device mounted on a wiring board, a semiconductor circuit portion is formed over a glass substrate. Then, an interposer having connection terminals are bonded to the semiconductor circuit portion. After that, the glass substrate is peeled off from the semiconductor circuit portion, and a mold resin is poured to cover the periphery of the semiconductor circuit portion from a direction of the separation plane. Then, the mold resin is heated under predetermined conditions to be hardened.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 30, 2008
    Inventors: Yohei Monma, Daiki Yamada, Hidekazu Takahashi, Yuusuke Sugawara, Kazuo Nishi
  • Publication number: 20080096366
    Abstract: A separation layer is formed over a substrate having a depressed portion, using a silane coupling agent; a conductive layer and an insulating layer that covers the conductive layer are formed in the depressed portion over the separation layer; and a sticky member is attached to the insulating layer, then the conductive layer and the insulating layer are separated from the substrate. Alternatively, after these steps, a flexible substrate is attached to the conductive layer and the insulating layer.
    Type: Application
    Filed: September 25, 2007
    Publication date: April 24, 2008
    Inventors: Tomoyuki Aoki, Takuya Tsurume, Daiki Yamada
  • Publication number: 20080012126
    Abstract: Paper embedded with a semiconductor device capable of communicating wirelessly is realized, whose unevenness of a portion including the semiconductor device does not stand out and the paper is thin with a thickness of less than or equal to 130 ?m. A semiconductor device is provided with a circuit portion and an antenna, and the circuit portion includes a thin film transistor. The circuit portion and the antenna are separated from a substrate used during manufacturing, and are interposed between a flexible base and a sealing layer and protected. The semiconductor device can be bent, and the thickness of the semiconductor device itself is less than or equal to 30 ?m. The semiconductor device is embedded in a paper in a papermaking process.
    Type: Application
    Filed: June 25, 2007
    Publication date: January 17, 2008
    Inventors: Yoshitaka Dozen, Tomoyuki Aoki, Hidekazu Takahashi, Daiki Yamada, Kaori Ogita, Naoto Kusumoto
  • Publication number: 20070296037
    Abstract: The present invention provides a thin and bendable semiconductor device utilizing an advantage of a flexible substrate used in the semiconductor device, and a method of manufacturing the semiconductor device. The semiconductor device has at least one surface covered by an insulating layer which serves as a substrate for protection. In the semiconductor device, the insulating layer is formed over a conductive layer serving as an antenna such that the value in the thickness ratio of the insulating layer in a portion not covering the conductive layer to the conductive layer is at least 1.2, and the value in the thickness ratio of the insulating layer formed over the conductive layer to the conductive layer is at least 0.2. Further, not the conductive layer but the insulating layer is exposed in the side face of the semiconductor device, and the insulating layer covers a TFT and the conductive layer.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 27, 2007
    Inventors: Yoshitaka Dozen, Tomoyuki Aoki, Hidekazu Takahashi, Daiki Yamada, Eiji Sugiyama, Kaori Ogita, Naoto Kusumoto
  • Publication number: 20070252181
    Abstract: In order to connect a semiconductor device including an integrated circuit to an external circuit typified by an antenna, the shape of the contact electrode to be formed in the semiconductor device is devised, so that bad connection between the external circuit and the contact electrode is not easily caused and the contact electrode with high reliability is provided. The contact electrode is formed by a screen printing method using a squeegee having a chamfered corner or having a wedge shape. The contact electrode has a peripheral portion and a central portion. The peripheral portion has a tapered portion with its film thickness gradually decreasing from the central portion toward the end portion, and the central portion has a projection portion that continues from the tapered portion.
    Type: Application
    Filed: April 25, 2007
    Publication date: November 1, 2007
    Inventors: Daiki Yamada, Tomoyuki Aoki
  • Publication number: 20070210344
    Abstract: It is an object of the present invention to obtain a photoelectric conversion device having a favorable spectral sensitivity characteristic and no variation in output current without such a contamination substance mixed into a photoelectric conversion layer or a transistor. Further, it is another object of the present invention to obtain a highly reliable semiconductor device in a semiconductor device having such a photoelectric conversion device.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 13, 2007
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tatsuya ARAO, Daiki YAMADA, Hidekazu TAKAHASHI, Naoto KUSUMOTO, Kazuo NISHI, Yuusuke SUGAWARA, Hironobu TAKAHASHI
  • Publication number: 20070187790
    Abstract: [Abstract]Considering further promotion of high output and miniaturization of a sensor element, it is an object of the present invention to form a plurality of elements in a limited area so that an area occupied by the element is reduced for integration. It is another object to provide a process which improves the yield of a sensor element. According to the present invention, a sensor element using an amorphous silicon film and an output amplifier circuit constituted by a thin film transistor are formed over a substrate having an insulating surface. In addition, a metal layer for protecting an exposed wire when a photoelectric conversion layer of the sensor element is patterned is provided between the photoelectric conversion layer and the wire connected to the thin film transistor.
    Type: Application
    Filed: September 15, 2005
    Publication date: August 16, 2007
    Inventors: Hidekazu Takahashi, Junya Maruyama, Daiki Yamada, Naoto Kusumoto, Kazuo Nishi, Hiroki Adachi, Yuusuke Sugawara
  • Publication number: 20070128774
    Abstract: A manufacturing method of a highly reliable semiconductor with a waterproof property. The method includes the steps of: sequentially forming a peeling layer, an inorganic insulating layer, and an element formation layer including an organic compound layer, over a substrate; separating the peeling layer and the inorganic insulating layer from each other, or separating the substrate and the inorganic insulating layer from each other; removing a part of the inorganic insulating layer or a part of the inorganic insulating layer and the element formation layer, thereby isolating at least the inorganic insulating layer into a plurality of sections so that at least two layers among the organic compound layer, a flexible substrate, and an adhesive agent are stacked at outer edges of the isolated inorganic insulating layers; and cutting a region where at least two layers among the organic compound layer, the flexible substrate, and the adhesive agent are stacked.
    Type: Application
    Filed: November 28, 2006
    Publication date: June 7, 2007
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Daiki YAMADA
  • Publication number: 20070113886
    Abstract: A photoelectric conversion device provided with a photoelectric conversion layer between a first electrode and a second electrode is formed. The first electrode is partially in contact with the photoelectric conversion layer, and a cross-sectional shape of the first electrode in the contact portion is a taper shape. In this case, part of a first semiconductor layer with one conductivity type is in contact with the first electrode. A planer shape in an edge portion of the first electrode is preferably nonangular, that is, a shape in which edges are planed or a curved shape. By such a structure, concentration of an electric field and concentration of a stress can be suppressed, whereby characteristic deterioration of the photoelectric conversion device can be reduced.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 24, 2007
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Tatsuya Arao, Naoto Kusumoto, Daiki Yamada, Hidekazu Takahashi, Kazuo NISHI, Yuusuke Sugawara, Hironobu Takahashi, Shuji Fukai
  • Publication number: 20070069340
    Abstract: It is an object of the present invention to provide a device which can pick up a chip from an adhesive film while preventing damage to the chip. In addition, a device which can pick up a chip over an adhesive film with a high yield is provided. A pickup device includes: a frame for holding a film to which a chip is attached, which is fixed to a support; a pressing jig which presses a surface of the film, to which a chip is not attached, while rotated or moved; a holding jig which holds the chip simultaneously with or after the pressing jig pressing the film; and a moving unit which moves the holding jig.
    Type: Application
    Filed: September 20, 2006
    Publication date: March 29, 2007
    Inventors: Daiki Yamada, Naoto Kusumoto
  • Publication number: 20070045672
    Abstract: The present invention provides a photoelectric conversion device capable of detecting light from weak light to strong light and relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer; an amplifier circuit including a transistor; and a switch, where the photodiode and the amplifier circuit are electrically connected to each other by the switch when intensity of entering light is lower than predetermined intensity so that a photoelectric current is amplified by the amplifier circuit to be outputted, and the photodiode and part or all of the amplifier circuits are electrically disconnected by the switch so that a photoelectric current is reduced in an amplification factor to be outputted. According to such a photoelectric conversion device, light from weak light to strong light can be detected.
    Type: Application
    Filed: July 24, 2006
    Publication date: March 1, 2007
    Inventors: Kazuo Nishi, Tatsuya Arao, Atsushi Hirose, Yuusuke Sugawara, Naoto Kusumoto, Daiki Yamada, Hidekazu Takahashi
  • Publication number: 20070045805
    Abstract: A semiconductor device which is excellent in chemical and physical strength and circumstance resistance is provided. A first stacked film including a first base material and a first adhesive layer is adhered so as to cover one surface of a stacked body including an integrated circuit, the stacked body is sealed by adhering a second stacked film including a second base material and a second adhesive layer so as to cover the other surface of the stacked body, and the first stacked film and the second stacked film are cut. Then, a side surface of the first stacked film and the second stacked film, which is exposed by the cutting, is irradiated with laser light.
    Type: Application
    Filed: July 24, 2006
    Publication date: March 1, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryosuke Watanabe, Daiki Yamada
  • Patent number: 7180197
    Abstract: The present invention provides a semiconductor device having a structure that can be mounted on a wiring substrate, as for the semiconductor device formed over a thin film-thickness substrate, a film-shaped substrate, or a sheet-like substrate. In addition, the present invention provides a method for manufacturing a semiconductor device that is capable of raising a reliability of mounting on a wiring substrate. One feature of the present invention is to bond a semiconductor element formed on a substrate having isolation to a member that a conductive film is formed via a medium having an anisotropic conductivity.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: February 20, 2007
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Hiroki Adachi, Naoto Kusumoto, Yuusuke Sugawara, Hidekazu Takahashi, Daiki Yamada, Yoshikazu Hiura
  • Publication number: 20070004233
    Abstract: A first layer (an insulating layer), a second layer (a metal layer), and a third layer (an insulating layer) are formed over a substrate. Then, a fourth layer including a semiconductor element is formed over the third layer. After applying an organic resin film covering the fourth layer, laser light is irradiated to sections of a rear surface side of the substrate. By irradiating the second layer with laser light, the state of being covered with the organic resin film can be maintained at the same time as forming a space under the organic resin film by ablating (alternatively, evaporating or breaking down) an irradiated region of the second layer, to cause a lift in the film in a periphery thereof.
    Type: Application
    Filed: June 21, 2006
    Publication date: January 4, 2007
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masafumi MORISUE, Ryosuke WATANABE, Junya MARUYAMA, Daiki YAMADA
  • Publication number: 20060275960
    Abstract: An object of the present invention is to provide a structure of a thin film circuit portion and a method for manufacturing a thin film circuit portion by which an electrode for connecting to an external portion can be easily formed under a thin film circuit. A stacked body including a first insulating film, a thin film circuit formed over one surface of the first insulating film, a second insulating film formed over the thin film circuit, an electrode formed over the second insulating film, and a resin film formed over the electrode, is formed. A conductive film is formed adjacent to the other surface of the first insulating film of the stacked body to be overlapped with the electrode. The conductive film is irradiated with a laser.
    Type: Application
    Filed: May 25, 2006
    Publication date: December 7, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daiki Yamada, Yoshitaka Dozen, Eiji Sugiyama, Hidekazu Takahashi
  • Publication number: 20060270195
    Abstract: It is an object to improve a yield of a step of cutting off a substrate. A substrate is cut off by using an ablation process. An ablation process uses a phenomenon in which a molecular bond in a portion irradiated with a laser beam, that is, a portion which absorbs the laser beam is cut off, photodegraded, and evaporated. In other words, a substrate is irradiated with a laser beam, a molecular bond in a portion of the substrate is cut off, photodegraded, and evaporated; accordingly, a groove is formed in the substrate. A method for cutting the substrate has steps of selectively emitting a laser beam and forming a groove in the substrate, and selectively emitting a laser beam to the groove and cutting off the substrate. Methods for manufacturing a groove in a substrate and cutting off a substrate are used for manufacturing a semiconductor device.
    Type: Application
    Filed: May 30, 2006
    Publication date: November 30, 2006
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Daiki Yamada, Naoto Kusumoto
  • Publication number: 20060270175
    Abstract: The present invention provides an antenna with low resistance and a semiconductor device having an antenna whose communication distance is improved. A fluid containing conductive particles is applied over an object. After curing the fluid containing the conductive particles, the fluid is irradiated with a laser to form an antenna. As a method for applying the fluid containing the conductive particles, screen printing, spin coating, dipping, or a droplet discharging method is used. Further, a solid laser having a wavelength of 1 nm or more and 380 nm or less is used as the laser.
    Type: Application
    Filed: May 15, 2006
    Publication date: November 30, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoyuki Aoki, Daiki Yamada
  • Publication number: 20060267204
    Abstract: The semiconductor device of the invention includes a transistor, an insulating layer provided over the transistor, a first conductive layer (corresponding to a source wire or a drain wire) electrically connected to a source region or a drain region of the transistor through an opening portion provided in the insulating layer, a first resin layer provided over the insulating layer and the first conductive layer, a layer containing conductive particles which is electrically connected to the first conductive layer through an opening portion provided in the first resin layer, and a substrate provided with a second resin layer and a second conductive layer serving as an antenna. In the semiconductor device having the above-described structure, the second conductive layer is electrically connected to the first conductive layer with the layer containing conductive particles interposed therebetween. In addition, the second resin layer is provided over the first resin layer.
    Type: Application
    Filed: May 18, 2006
    Publication date: November 30, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Takahashi, Daiki Yamada, Kyosuke Ito, Eiji Sugiyama, Yoshitaka Dozen