Patents by Inventor Daiki Yanagishima

Daiki Yanagishima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096538
    Abstract: A signal transmission device is constituted by a transformer chip having, for example, a first wiring layer, a second wiring layer different from the first wiring layer, a primary winding formed in the first wiring layer, a secondary winding formed in the second wiring layer to be magnetically coupled with the primary winding, and a shield electrode formed to be interposed between the primary and secondary windings.
    Type: Application
    Filed: January 12, 2022
    Publication date: March 21, 2024
    Inventors: Yusuke KITADA, Masahiko ARIMURA, Daiki YANAGISHIMA
  • Publication number: 20230387185
    Abstract: This semiconductor device is provided with: a high-voltage die pad and a low-voltage die pad, which are insulated from each other; a resistive element which is mounted on the high-voltage die pad; and a semiconductor element which is mounted on the low-voltage die pad. The resistive element is provided with: a substrate which is mounted on the high-voltage die pad; an insulating layer which is formed on the substrate; and a thin film resistive layer which is formed on the insulating layer.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Masahiko ARIMURA, Daiki YANAGISHIMA
  • Publication number: 20230353144
    Abstract: A signal transmission device 100 includes an isolated signal transmission circuit 10 configured to transmit a pulse signal from a primary circuit system 1p via a first isolating element ISO1 to a secondary circuit system 1s, and an isolated power supply control circuit 20 which serves as a controlling agent of an isolation-type power supply that generates a second supply voltage Vcc2 for the secondary circuit system 1s from a first supply voltage Vcc1 for the primary circuit system 1p and which transmits an output feedback signal of the isolation-type power supply from the secondary circuit system 1s via a second isolating element ISO2 to the primary circuit system 1p.
    Type: Application
    Filed: May 25, 2021
    Publication date: November 2, 2023
    Inventors: Daiki YANAGISHIMA, Akio SASABE
  • Publication number: 20230327662
    Abstract: A signal transmission device that transmits a driving signal for a power transistor from a primary circuit system to a secondary circuit system while isolating between the primary and secondary circuit systems includes; a first fault detection circuit configured to detect a fault in the primary circuit system; a second fault detection circuit configured to detect a fault in the secondary circuit system; a first signal transmission path configured to transmit the result of detection by the second fault detection circuit from the secondary circuit system to the primary circuit system while isolating between the primary and secondary circuit systems; and a self-test circuit configured to perform a self-test on each of the first fault detection circuit, the second fault detection circuit, and the first signal transmission path.
    Type: Application
    Filed: September 16, 2021
    Publication date: October 12, 2023
    Inventors: Takeshi KIKUCHI, Masato NISHINOUCHI, Akio SASABE, Daiki YANAGISHIMA
  • Publication number: 20230318882
    Abstract: A signal transmission device transmits a driving signal for a gate-driving transistor between a primary circuit system and a secondary circuit system while isolating between the primary and secondary circuit systems. The signal transmission device includes: a first external terminal configured such that the ground terminal of the secondary circuit system is connected to it; a second external terminal configured such that the terminal voltage at it varies according to whether the first external terminal is in an open state; and an open detection circuit configured to monitor the terminal voltage at the second external terminal to perform open detection for the first external terminal.
    Type: Application
    Filed: September 15, 2021
    Publication date: October 5, 2023
    Inventors: Takeshi KIKUCHI, Masato NISHINOUCHI, Akio SASABE, Daiki YANAGISHIMA
  • Publication number: 20230298805
    Abstract: The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
    Type: Application
    Filed: April 13, 2023
    Publication date: September 21, 2023
    Inventors: Kosei OSADA, Isamu NISHIMURA, Tetsuya KAGAWA, Daiki YANAGISHIMA, Toshiyuki ISHIKAWA, Michihiko MIFUJI, Satoshi KAGEYAMA, Nobuyuki KASAHARA
  • Publication number: 20230261625
    Abstract: This switching power source 100 has: a switching output circuit 110 which drives an inductor current IL by turning on and off an upper switch 111 and a lower switch 112 and generates an output voltage VOUT from an input voltage PVDD; a lower current detection unit 210 which detects the inductor current IL flowing through the lower switch 112 during an ON-period of the lower switch 112 and acquires lower current feedback information Iinfo; an error amplifier 140 which outputs voltage feedback information Vinfo including information on an error between the output voltage VOUT (feedback voltage FB) and a reference voltage REF; an information synthesis unit 220 that generates synthesis feedback information VIinfo by synthesizing Iinfo with Vinfo; and an information holding unit 230 which samples Vinfo during the ON-period of the lower switch 112.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Masashi Nagasato, Seiji Takenaka, Tetsuo Tateishi, Daiki YANAGISHIMA
  • Publication number: 20230253963
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Inventors: Daiki YANAGISHIMA, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 11658659
    Abstract: A signal transmission device includes a signal transmission chip, and a first lead frame supporting the signal transmission chip. A first inductor spiral ring is on a surface of the signal transmission chip, a second inductor spiral ring is inside the signal transmission chip, a first bonding pad is electrically coupled between the first and second inductor spiral rings, a guard ring covers the first and second inductor spiral rings in a plan view, and bonding pads are outside of the guard ring. A direction of rotation between the first and second inductor spiral rings are different from each other. The signal transmission device further includes a semiconductor chip and a second lead frame supporting the semiconductor chip, wherein the signal transmission chip and the semiconductor chip face each other.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: May 23, 2023
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 11657953
    Abstract: The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: May 23, 2023
    Assignee: ROHM CO., LTD.
    Inventors: Kosei Osada, Isamu Nishimura, Tetsuya Kagawa, Daiki Yanagishima, Toshiyuki Ishikawa, Michihiko Mifuji, Satoshi Kageyama, Nobuyuki Kasahara
  • Publication number: 20230155470
    Abstract: A pulse receiving circuit constituting a signal transmission device includes a first pulse detector that receives a differential input between a first reception pulse signal, i.e. an internal signal at a secondary winding of a first transformer and a second reception pulse signal, i.e. an internal signal at a secondary winding of a second transformer; a second pulse detector that receives the differential input between the first reception pulse signal and the second reception pulse signal with input polarity reversed to that of the first pulse detector; and a logic unit that generates a reception pulse signal based on output signals of the first and second pulse detectors, respectively.
    Type: Application
    Filed: April 6, 2021
    Publication date: May 18, 2023
    Inventors: Tsuyoshi FUKURA, Daiki YANAGISHIMA, Akio SASABE
  • Publication number: 20230146017
    Abstract: A comparator circuit includes a first comparator configured to receive input of an input signal and a comparison target signal to be compared with the input signal, a first output stage including an N-channel transistor having a control terminal to which a first control terminal voltage output from the first comparator is applied, and a first clamp unit configured to limit the first control terminal voltage to be not higher than a first predetermined voltage that is higher than a first threshold voltage of the N-channel transistor but is lower than a first high side voltage output as high level from the first comparator when the first control terminal voltage is not limited.
    Type: Application
    Filed: February 8, 2021
    Publication date: May 11, 2023
    Applicant: ROHM CO., LTD.
    Inventors: Akio SASABE, Daiki YANAGISHIMA
  • Patent number: 11627023
    Abstract: In a transmission circuit, a first pulse signal with a first frequency and a second pulse signal with a second frequency are output according to a rising edge and a falling edge of a first input signal, respectively. When a second input signal indicates an active level, the second pulse signal is output according to the falling edge of the first input signal and the second frequency is changed to a third frequency. In a reception circuit, a first level of a first output signal is changed to a second level according to a first induced signal via a transformer, the second level of the first output signal is changed to the first level according to a second induced signal via the transformer, and a second output signal is changed to an active level when a frequency of the second induced signal has changed to the third frequency.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: April 11, 2023
    Assignees: DENSO CORPORATION, ROHM CO., LTD.
    Inventors: Junichi Hasegawa, Yusuke Michisita, Kazuma Takahashi, Daiki Yanagishima, Masahiko Arimura
  • Publication number: 20220150096
    Abstract: In a transmission circuit, a first pulse signal with a first frequency and a second pulse signal with a second frequency are output according to a rising edge and a falling edge of a first input signal, respectively. When a second input signal indicates an active level, the second pulse signal is output according to the falling edge of the first input signal and the second frequency is changed to a third frequency. In a reception circuit, a first level of a first output signal is changed to a second level according to a first induced signal via a transformer, the second level of the first output signal is changed to the first level according to a second induced signal via the transformer, and a second output signal is changed to an active level when a frequency of the second induced signal has changed to the third frequency.
    Type: Application
    Filed: January 27, 2022
    Publication date: May 12, 2022
    Inventors: Junichi HASEGAWA, Yusuke MICHISITA, Kazuma TAKAHASHI, Daiki YANAGISHIMA, Masahiko ARIMURA
  • Publication number: 20210351772
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sal) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: July 23, 2021
    Publication date: November 11, 2021
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 11115020
    Abstract: A signal transmission device includes a first lead frame supporting a signal transmission chip that includes first and second inductor spiral rings, a first bonding pad electrically coupled between the first and second inductor spiral rings, and a guard ring provided to roundly cover the first and second inductor spiral rings in a plan view. Bonding pads are provided outside of the guard ring. A direction of rotation between the first and second inductor spiral rings are different from each other so that the first and second inductor spiral rings are disposed substantially symmetrically about the first bonding pad. A second lead frame supports a semiconductor chip, with the signal transmission chip and the semiconductor chip facing each other.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: September 7, 2021
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20210233700
    Abstract: The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Inventors: Kosei OSADA, Isamu NISHIMURA, Tetsuya KAGAWA, Daiki YANAGISHIMA, Toshiyuki ISHIKAWA, Michihiko MIFUJI, Satoshi KAGEYAMA, Nobuyuki KASAHARA
  • Patent number: 11011297
    Abstract: The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: May 18, 2021
    Assignee: ROHM CO., LTD.
    Inventors: Kosei Osada, Isamu Nishimura, Tetsuya Kagawa, Daiki Yanagishima, Toshiyuki Ishikawa, Michihiko Mifuji, Satoshi Kageyama, Nobuyuki Kasahara
  • Publication number: 20200313671
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: July 11, 2019
    Publication date: October 1, 2020
    Applicant: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20200203058
    Abstract: The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 25, 2020
    Inventors: Kosei OSADA, Isamu NISHIMURA, Tetsuya KAGAWA, Daiki YANAGISHIMA, Toshiyuki ISHIKAWA, Michihiko MIFUJI, Satoshi KAGEYAMA, Nobuyuki KASAHARA