Patents by Inventor Daiki Yanagishima

Daiki Yanagishima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190334522
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Applicant: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 10382035
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: August 13, 2019
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 10333499
    Abstract: A signal transmission circuit which transmits N (N is a natural number of 2 or more) input signals includes a transmission signal generation portion, 2N transmission portions and an output portion. The transmission signal generation portion generates 2N transmission signals according to the N input signals. The 2N transmission portions respectively transmit the 2N transmission signals output from the transmission signal generation portion while performing electrical insulation. The output portion generates and outputs, based on the 2N transmission signals transmitted by the 2N transmission portions, N output signals that respectively indicate the N input signals. The transmission signal generation portion generates a pulse according to the N input signals and incorporates the pulse in only one of the 2N transmission signals at the same time.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: June 25, 2019
    Assignee: Rohm Co., Ltd.
    Inventors: Toshiyuki Ishikawa, Daiki Yanagishima, Yoshizo Osumi
  • Patent number: 10109995
    Abstract: A switch drive circuit for driving a switching device includes an overcurrent detector which detects an overcurrent passing through the switching device, and a voltage controller which applies a control voltage to the switching device to control the switching device between On and Off states. When the overcurrent detector detects an overcurrent, the voltage controller applies to the switching device a control voltage that initially drops to a predetermined voltage higher than the threshold voltage of the switching device and that then, after the lapse of a predetermined time, drops further to the ground potential of the switch drive circuit to turn off the switching device. When the overcurrent detector detects no overcurrent, the voltage controller applies to the switching device a control voltage that drops, before the lapse of the predetermined voltage, to the ground potential of the switch drive circuit to turn off the switching device.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: October 23, 2018
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Chinatsu Nakaoka
  • Publication number: 20180026611
    Abstract: A signal transmission circuit which transmits N (N is a natural number of 2 or more) input signals includes a transmission signal generation portion, 2N transmission portions and an output portion. The transmission signal generation portion generates 2N transmission signals according to the N input signals. The 2N transmission portions respectively transmit the 2N transmission signals output from the transmission signal generation portion while performing electrical insulation. The output portion generates and outputs, based on the 2N transmission signals transmitted by the 2N transmission portions, N output signals that respectively indicate the N input signals. The transmission signal generation portion generates a pulse according to the N input signals and incorporates the pulse in only one of the 2N transmission signals at the same time.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 25, 2018
    Inventors: Toshiyuki ISHIKAWA, Daiki YANAGISHIMA, Yoshizo OSUMI
  • Publication number: 20170287624
    Abstract: The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 5, 2017
    Applicant: ROHM CO., LTD.
    Inventors: Kosei OSADA, Isamu NISHIMURA, Tetsuya KAGAWA, Daiki YANAGISHIMA, Toshiyuki ISHIKAWA, Michihiko MIFUJI, Satoshi KAGEYAMA, Nobuyuki KASAHARA
  • Publication number: 20170194959
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin).
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 9697948
    Abstract: The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: July 4, 2017
    Assignee: ROHM CO., LTD.
    Inventors: Kosei Osada, Isamu Nishimura, Tetsuya Kagawa, Daiki Yanagishima, Toshiyuki Ishikawa, Michihiko Mifuji, Satoshi Kageyama, Nobuyuki Kasahara
  • Patent number: 9632135
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 25, 2017
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Publication number: 20160248243
    Abstract: A switch drive circuit for driving a switching device includes an overcurrent detector which detects an overcurrent passing through the switching device, and a voltage controller which applies a control voltage to the switching device to control the switching device between On and Off states. When the overcurrent detector detects an overcurrent, the voltage controller applies to the switching device a control voltage that initially drops to a predetermined voltage higher than the threshold voltage of the switching device and that then, after the lapse of a predetermined time, drops further to the ground potential of the switch drive circuit to turn off the switching device. When the overcurrent detector detects no overcurrent, the voltage controller applies to the switching device a control voltage that drops, before the lapse of the predetermined voltage, to the ground potential of the switch drive circuit to turn off the switching device.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 25, 2016
    Inventors: Daiki YANAGISHIMA, Chinatsu NAKAOKA
  • Publication number: 20150137314
    Abstract: The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 21, 2015
    Applicant: ROHM CO., LTD.
    Inventors: Kosei OSADA, Isamu NISHIMURA, Tetsuya KAGAWA, Daiki YANAGISHIMA, Toshiyuki ISHIKAWA, Michihiko MIFUJI, Satoshi KAGEYAMA, Nobuyuki KASAHARA
  • Publication number: 20150137843
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Application
    Filed: December 19, 2014
    Publication date: May 21, 2015
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 8947117
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 3, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 8823438
    Abstract: A signal transmission circuit 200 transmits input signals IN1 and IN2 each having a different transmission speed in a mutually electrically insulated manner. Signal transmission circuit 200 includes a pulse generation unit 210, transmission units 230 and 235, a latch circuit 250, and an oscillation determination circuit 270. Transmission units 230 and 235 transmit pulse signals PLS_A and PLS_B generated by pulse generation unit 210 in accordance with logical states of input signals IN1 and IN2 to latch circuit 250 and oscillation determination circuit 270 in a mutually electrically insulated manner. Latch circuit 250 restores input signal IN1 in accordance with rising edges of pulse signals PLS_A and PLS_B. Oscillation determination circuit 270 restores input signal IN2 based on oscillation states of pulse signals PLS_A and PLS_B. With such a configuration, a plurality of signals each having a different transmission speed can be transmitted in a mutually electrically insulated manner.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: September 2, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa
  • Publication number: 20140002168
    Abstract: A signal transmission circuit 200 transmits input signals IN1 and IN2 each having a different transmission speed in a mutually electrically insulated manner. Signal transmission circuit 200 includes a pulse generation unit 210, transmission units 230 and 235, a latch circuit 250, and an oscillation determination circuit 270. Transmission units 230 and 235 transmit pulse signals PLS_A and PLS_B generated by pulse generation unit 210 in accordance with logical states of input signals IN1 and IN2 to latch circuit 250 and oscillation determination circuit 270 in a mutually electrically insulated manner. Latch circuit 250 restores input signal IN1 in accordance with rising edges of pulse signals PLS_A and PLS_B. Oscillation determination circuit 270 restores input signal IN2 based on oscillation states of pulse signals PLS_A and PLS_B. With such a configuration, a plurality of signals each having a different transmission speed can be transmitted in a mutually electrically insulated manner.
    Type: Application
    Filed: June 21, 2013
    Publication date: January 2, 2014
    Applicant: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa
  • Publication number: 20120212251
    Abstract: Disclosed is a signal transmission circuit device (200) including a feedback signal transmission unit (210) that feeds back a control output signal (Sout) as a feedback signal (Sf) to an input side circuit (200A). A logical comparison circuit (212) detects “mismatch” between input and output by performing logical comparison between a control input signal (Sin) and the feedback signal (Sf). When a state of “mismatch” between input and output occurs, a first pulse generating circuit (202) or a second pulse generating circuit (204) outputs a first correction signal (Sa1) or a second correction signal (Sa2) corresponding to a potential (high level or low level) of the control input signal (Sin), and corrects the control output signal (Sout) to the same potential (high level or low level) as the control input signal (Sin). With such configuration, the mismatch between input and output can be automatically corrected.
    Type: Application
    Filed: October 13, 2010
    Publication date: August 23, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa, Hirotaka Takihara
  • Patent number: 8040161
    Abstract: A power semiconductor drive circuit device includes: an electronic control device generating a control input signal; a signal transfer circuit device having a main path and a self-diagnosis functional block; and a power semiconductor driven by the control output signal from the signal transfer circuit device. The self-diagnosis functional block includes: a feedback pulse transmitter circuit; a second signal transfer circuit; and a second receiver circuit. The second receiver circuit compares the control output signal with the control input signal so as to find out whether the control output signal is matched or unmatched with the control input signal, and then outputs a result to a comparison signal output terminal. A signal outputted to the comparison signal output terminal is transferred to the electronic control device.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 18, 2011
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Toshiyuki Ishikawa
  • Patent number: 7848066
    Abstract: A motor drive device includes: chopping signal generation means for generating a chopping signal Sa when drive current of a driver has reached a first threshold value; chopping signal cut-off means for cutting off the chopping signal Sa when the drive current has reached a second threshold value which is greater than the first threshold value; and overcurrent protection means for generating an overcurrent protection signal Se when the drive current has reached a third threshold value which is greater than the first threshold value and its continuation time has reached a predetermined threshold value time. Thus it is possible to simultaneously obtain the constant current chopping function and the overcurrent protection function and to improve its reliability and safety.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: December 7, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Daiki Yanagishima
  • Patent number: 7835122
    Abstract: A semiconductor integrated circuit device comprises a first terminal (denoted by VCC) connected to a power supply in a normally mounted state, a second terminal (denoted by SB) connected to a signal line in the normally mounted state and to a power supply in a reversely mounted state, a third terminal (denoted by SGND) connected to the ground in the normally mounted state, fourth terminals (denoted by HU?, HW?) connected to the signal line in the normally mounted state and to the ground in the reversely mounted state, electrostatic protective diodes (denoted by D1, D6) having anodes connected to the third terminal and cathodes connected to the fourth terminals and serving as means for protecting the fourth terminal in the normally mounted state, a current control resistor (R1) having one end connected to the second terminal and serving as means for preventing the second terminal from being broken in the reversely mounted state, a Zener diode (ZD) having an anode connected to the third terminal and a cathode c
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: November 16, 2010
    Assignee: Rohm Co., Ltd.
    Inventors: Daiki Yanagishima, Masanori Tsuchihashi
  • Patent number: 7759985
    Abstract: A driver circuit of the present invention includes: a pair of switch elements (P1, N1) connected in series between a ground terminal and a stepped-up voltage VCP application terminal to which a stepped-up voltage VCP is applied; and a clamp element ZD1 connected between a node A between the pair of switch elements and an output terminal T2, the driver circuit driving, according to a voltage signal derived from the node A, an N-channel output transistor Q1 connected between the output terminal T2 and a power supply voltage VCC application terminal to which a power supply voltage VCC is applied. Here, a current control section (IL1, IL2) formed of a resistor and a capacitor that are connected in parallel with each other is inserted in at least one of a current path that connects the node A and the stepped-up voltage VCP application terminal and a current path that connects the node A and the ground terminal.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: July 20, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Daiki Yanagishima