Patents by Inventor Daiting Rong

Daiting Rong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210076989
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: November 18, 2020
    Publication date: March 18, 2021
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20210068720
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: November 18, 2020
    Publication date: March 11, 2021
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10932709
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 2, 2021
    Assignee: DEXCOM, INC.
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20210038128
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20210038129
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20210015407
    Abstract: Various examples are directed to a glucose sensor comprising a working electrode to support an oxidation reaction and a reference electrode to support a redox reaction. The reference electrode may comprise silver and silver chloride. The Glucose sensor may also comprise an anti-mineralization agent positioned at the reference electrode to reduce formation of calcium carbonate at the reference electrode.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Inventors: Sebastian Bohm, Wenjie Lan, Thomas Robert Porter, Daiting Rong, Jason Halac
  • Publication number: 20210000394
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10835162
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 17, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20200330006
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20200281511
    Abstract: Disclosed herein are devices, systems, and methods for a continuous analyte sensor, such as a continuous glucose sensor. In certain embodiments disclosed herein, various in vivo properties of the sensor's surroundings can be measured. In some embodiments, the measured properties can be used to identify a physiological response or condition in the body. This information can then be used by a patient, doctor, or system to respond appropriately to the identified condition.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: Naresh C. Bhavaraju, Sebastian Bohm, Robert J. Boock, Daiting Rong, Peter C. Simpson
  • Patent number: 10722162
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: July 28, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10722161
    Abstract: Disclosed herein are devices, systems, and methods for a continuous analyte sensor, such as a continuous glucose sensor. In certain embodiments disclosed herein, various in vivo properties of the sensor's surroundings can be measured. In some embodiments, the measured properties can be used to identify a physiological response or condition in the body. This information can then be used by a patient, doctor, or system to respond appropriately to the identified condition.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 28, 2020
    Assignee: DexCom, Inc.
    Inventors: Naresh C. Bhavaraju, Sebastian Bohm, Robert J. Boock, Daiting Rong, Peter C. Simpson
  • Publication number: 20200205701
    Abstract: Various examples described herein are directed to systems and methods for determining an analyte concentration using an analyte sensor. A method may comprise disconnecting an analyte sensor from a measurement circuit and reconnecting the analyte sensor to the measurement circuit after an accumulation period. The method may comprise receiving a signal from the analyte sensor. The signal may be indicative of an amount of charge accumulated on the analyte sensor during the accumulation period. The method may also comprise determining an estimated analyte concentration level based on the received signal.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas
  • Publication number: 20200205702
    Abstract: Various examples are directed to systems and methods of and using analyte sensors. An example analyte sensor system comprises an analyte sensor and a hardware device in communication with the analyte sensor. The hardware device may be configured to perform operations comprising applying a first bias voltage to the analyte sensor, the first bias voltage less than an operational bias voltage of the analyte sensor, measuring a first current at the analyte sensor when the first bias voltage is applied, and applying a second bias voltage to the analyte sensor. The operations may further comprise measuring a second current at the analyte sensor when the second bias voltage is applied, detecting a plateau bias voltage using the first current and the second current, determining that the plateau bias voltage is less than a plateau bias voltage threshold, and executing a responsive action at the analyte sensor.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas, Vincent P. Crabtree, Kamuran Turksoy
  • Publication number: 20200209179
    Abstract: Various examples described herein are directed to systems and methods of detecting damage to an analyte sensor using analyte sensor impedance values. In some examples, a method of assessing sensor membrane integrity using sensor electronics comprises determining an impedance parameter of an analyte sensor and determining a membrane integrity state of the analyte sensor based on the impedance parameter.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Vincent P. Crabtree, Kamuran Turksoy
  • Publication number: 20200205694
    Abstract: Various examples are directed to systems and methods for operating an analyte sensor system using sensor electronics. An example method may comprise applying a bias voltage change to an analyte sensor bias voltage and measuring a current value for each of a plurality of time periods after application of the bias voltage change. The example method may also comprise determining an estimated impedance using the current values for the plurality of time periods and determining a characteristic of the analyte sensor using the estimated impedance. The example method may further comprise receiving from the analyte sensor a signal indicative of an analyte concentration, and determining an estimated analyte concentration level using the determined characteristic of the analyte sensor and the received signal.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth
  • Patent number: 10687740
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 23, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Patent number: 10682084
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: June 16, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10624568
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: April 21, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10610141
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 7, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson