Patents by Inventor Daiting Rong

Daiting Rong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9808190
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: November 7, 2017
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Patent number: 9801575
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 31, 2017
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20170079566
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes an electrochemical sensor incorporating a silver/silver chloride reference electrode, wherein a capacity of the reference electrode is controlled.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 23, 2017
    Inventors: Daiting Rong, Sebastian Böhm, Matthew D. Wightlin
  • Patent number: 9517025
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes an electrochemical sensor incorporating a silver/silver chloride reference electrode, wherein a capacity of the reference electrode is controlled.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: December 13, 2016
    Assignee: DexCom, Inc.
    Inventors: Daiting Rong, Sebastian Böhm, Matthew D. Wightlin
  • Patent number: 9451908
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 27, 2016
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jacob S. Leach, Ying Li, Daiting Rong, Sean Saint, Peter C. Simpson, Mark Brister
  • Publication number: 20160256092
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes an electrochemical sensor incorporating a silver/silver chloride reference electrode, wherein a capacity of the reference electrode is controlled.
    Type: Application
    Filed: May 12, 2016
    Publication date: September 8, 2016
    Inventors: Daiting Rong, Sebastian Böhm, Matthew D. Wightlin
  • Publication number: 20160235349
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Application
    Filed: April 27, 2016
    Publication date: August 18, 2016
    Inventors: APURV ULLAS KAMATH, JACOB S. LEACH, YING LI, DAITING RONG, SEAN SAINT, PETER C. SIMPSON, MARK C. BRISTER
  • Publication number: 20160198986
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: December 1, 2015
    Publication date: July 14, 2016
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20160157758
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 9, 2016
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 9351677
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes an electrochemical sensor incorporating a silver/silver chloride reference electrode, wherein a capacity of the reference electrode is controlled.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: May 31, 2016
    Assignee: DexCom, Inc.
    Inventors: Daiting Rong, Sebastian Bohm, Matthew D. Wightlin
  • Publication number: 20160113556
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: December 9, 2015
    Publication date: April 28, 2016
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20160073941
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 17, 2016
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20160018246
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 21, 2016
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20150351670
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 10, 2015
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Publication number: 20150351672
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 10, 2015
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Publication number: 20150351671
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 10, 2015
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Publication number: 20150351673
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 10, 2015
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Publication number: 20150289788
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Patent number: 9149220
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 6, 2015
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20140213866
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: April 10, 2014
    Publication date: July 31, 2014
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang