Patents by Inventor Daizo Endo

Daizo Endo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11287487
    Abstract: A magnetic sensor 1 includes: a thin film magnet 20 which is constituted by a hard magnetic material layer 103 and has magnetic anisotropy in an in-plane direction; and a sensitive part 30 including a sensitive element 31 sensing a magnetic field by a magnetic impedance effect, the sensitive element 31 being constituted by a soft magnetic material layer 105 laminated on the hard magnetic material layer 103, having a longitudinal direction and a short direction, and having uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction, in which the longitudinal direction faces in the direction of a magnetic field generated by the thin film magnet 20. The thin film magnet 20 and the sensitive element 31 are provided to constitute a magnetic circuit with a facing member provided outside to face one of magnetic poles of the thin film magnet 20.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: March 29, 2022
    Assignee: SHOWA DENKO K.K.
    Inventor: Daizo Endo
  • Publication number: 20220018911
    Abstract: A magnetic sensor (1) includes: a nonmagnetic substrate (10); and a sensitive element (31) including a plurality of soft magnetic layers (105) (lower soft magnetic layer (105a) and upper soft magnetic layer (105b)) laminated on or above the substrate (10) and a conductor layer (106) laminated between the plurality of soft magnetic layers (105) and having higher conductivity than the plurality of soft magnetic layers (105). The sensitive element (31) has a longitudinal direction and a transverse direction and has uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction. The sensitive element (31) is configured to sense a magnetic field by a magnetic impedance effect.
    Type: Application
    Filed: October 21, 2019
    Publication date: January 20, 2022
    Applicant: SHOWA DENKO K.K.
    Inventors: Tatsunori SHINO, Daizo ENDO
  • Publication number: 20210373093
    Abstract: A magnetic sensor 1 includes: a nonmagnetic substrate 10; a sensitive element 31 laminated on the substrate 10, the sensitive element 31 being made of a soft magnetic material, the sensitive element 31 having a longitudinal direction and a transverse direction and having uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction, the sensitive element 31 being configured to sense a magnetic field by a magnetic impedance effect; and a pair of thin-film magnets 20a, 20b laminated on the substrate 10 and disposed to face each other in the longitudinal direction across the sensitive element 31, the pair of thin-film magnets 20a, 20b being configured to apply a magnetic field in the longitudinal direction of the sensitive element 31.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 2, 2021
    Applicant: SHOWA DENKO K. K.
    Inventors: Daizo ENDO, Tatsunori SHINO, Haruhisa OHASHI
  • Patent number: 11187762
    Abstract: A magnetic sensor 1 is provided with: a thin film magnet 20 configured with a hard magnetic material and having magnetic anisotropy in an in-plane direction; a sensitive part 30 including a sensitive element 31 configured with a soft magnetic material and disposed to face the thin film magnet 30, the sensitive element 31 having a longitudinal direction in which a magnetic flux generated by the thin film magnet 20 passes through and a short direction, having uniaxial magnetic anisotropy in a direction crossing the longitudinal direction, and sensing a change in a magnetic field; and a control layer 102 disposed on a side of the thin film magnet 20 opposite to a side of the thin film magnet 20 on which the sensitive element 31 is provided, the control layer 102 controlling the magnetic anisotropy of the thin film magnet 20 to be directed in the in-plane direction.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 30, 2021
    Assignee: SHOWA DENKO K.K.
    Inventor: Daizo Endo
  • Publication number: 20210141035
    Abstract: A magnetic sensor 1 is provided with: a thin film magnet 20 configured with a hard magnetic material and having magnetic anisotropy in an in-plane direction; a sensitive part 30 including a sensitive element 31 configured with a soft magnetic material and disposed to face the thin film magnet 30, the sensitive element 31 having a longitudinal direction in which a magnetic flux generated by the thin film magnet 20 passes through and a short direction, having uniaxial magnetic anisotropy in a direction crossing the longitudinal direction, and sensing a change in a magnetic field; and a control layer 102 disposed on a side of the thin film magnet 20 opposite to a side of the thin film magnet 20 on which the sensitive element 31 is provided, the control layer 102 controlling the magnetic anisotropy of the thin film magnet 20 to be directed in the in-plane direction.
    Type: Application
    Filed: April 6, 2018
    Publication date: May 13, 2021
    Applicant: SHOWA DENKO K.K.
    Inventor: Daizo ENDO
  • Publication number: 20200386830
    Abstract: A method of manufacturing a magnetic sensor (1) which method includes: forming a hard magnetic material layer (103) to be processed to a thin film magnet (20) on a disk-shaped nonmagnetic substrate (10); forming a soft magnetic material layer (105) laminated on the hard magnetic material layer (103) on the substrate (10), the soft magnetic material layer (105) being processed into a sensitive element sensing a magnetic field; and magnetizing the hard magnetic material layer (103) in the circumferential direction of the disk-shaped substrate 10. Also disclosed is a magnetic sensor assembly.
    Type: Application
    Filed: November 9, 2018
    Publication date: December 10, 2020
    Applicant: SHOWA DENKO K.K.
    Inventor: Daizo ENDO
  • Publication number: 20200341077
    Abstract: A magnetic sensor 1 includes: a thin film magnet 20 which is constituted by a hard magnetic material layer 103 and has magnetic anisotropy in an in-plane direction; and a sensitive part 30 including a sensitive element 31 sensing a magnetic field by a magnetic impedance effect, the sensitive element 31 being constituted by a soft magnetic material layer 105 laminated on the hard magnetic material layer 103, having a longitudinal direction and a short direction, and having uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction, in which the longitudinal direction faces in the direction of a magnetic field generated by the thin film magnet 20. The thin film magnet 20 and the sensitive element 31 are provided to constitute a magnetic circuit with a facing member provided outside to face one of magnetic poles of the thin film magnet 20.
    Type: Application
    Filed: October 25, 2018
    Publication date: October 29, 2020
    Applicant: SHOWA DENKO K.K.
    Inventor: Daizo ENDO
  • Publication number: 20200264243
    Abstract: A method of manufacturing a magnetic sensor includes: a soft magnetic material layer deposition process depositing a soft magnetic material layer (101) constituting a sensitive part (21) sensing a magnetic field on a substrate (10) by magnetron sputtering; and a sensitive part formation process forming the sensitive part (21) sensing the magnetic field in a portion of the soft magnetic material layer (101) where uniaxial magnetic anisotropy is provided by a magnetic field used for magnetron sputtering of the soft magnetic material layer (101).
    Type: Application
    Filed: September 12, 2018
    Publication date: August 20, 2020
    Applicant: SHOWA DENKO K.K.
    Inventor: Daizo ENDO
  • Patent number: 10559320
    Abstract: The present invention relates to a magnetic recording medium in which a lubricant layer contains a compound A represented by general formula (1) and a compound B represented by general formula (2), satisfying (A/B)=0.2 to 3.0, and has an average thickness of 0.8 nm to 2 nm. R1—C6H4OCH2CH(OH)CH2OCH2—R2—CH2OCH2CH(OH)CH2OH . . . (1) (R1 is an alkoxy group having 1 to 4 carbon atoms. R2 is —CF2O(CF2CF2O)x(CF2O)yCF2— (x, y=0 to 15), —CF2CF2O(CF2CF2CF2O)zCF2CF2— (z=1 to 15), —CF2CF2CF2O(CF2CF2CF2CF2O)nCF2CF2CF2— (n=0 to 4). HOCH2CF2CF2O(CF2CF2CF2O)mCF2CF2CH2OCH2CH(OH)CH2OH . . . (2) (m is an integer).
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: February 11, 2020
    Assignee: SHOWA DENKO K.K.
    Inventors: Satoru Nakamura, Taining Hung, Evance Kuo, Daizo Endo
  • Patent number: 10079036
    Abstract: A magnetic recording medium 11 in which the outermost surface of a protective layer 3 on a lubricant layer 4 side contains carbon and nitrogen of 10 atomic % to 90 atomic %, the lubricant layer 4 is formed by being in contact with the outermost surface, and contains a compound A of Formula (1) and a compound B of Formula (2), a mass ratio (A/B) of the compound A with respect to the compound B is 0.2 to 0.3, the average molecular weights of the compounds A and B are 1,500 to 2,000 and 1,300 to 2,400, respectively, and the average film thickness is 0.5 nm to 2 nm. R1-C6H4OCH2CH(OH)CH2OCH2—R2-CH2OCH2CH(OH)CH2OH ??(1) (R1 is an alkoxy group having 1 to 4 carbon atoms. R2 is —CF2O(CF2CF2O)x(CF2O)yCF2—).
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: September 18, 2018
    Assignee: SHOWA DENKO K.K.
    Inventors: Satoru Nakamura, Taining Hung, Evance Kuo, Daizo Endo
  • Publication number: 20170337945
    Abstract: The present invention relates to a magnetic recording medium in which a lubricant layer contains a compound A represented by general formula (1) and a compound B represented by general formula (2), satisfying (A/B)=0.2 to 3.0, and has an average thickness of 0.8 nm to 2 nm. R1—C6H4OCH2CH(OH)CH2OCH2—R2—CH2OCH2CH(OH)CH2OH . . . (1) (R1 is an alkoxy group having 1 to 4 carbon atoms. R2 is —CF2O(CF2CF2O)x(CF2O)yCF2— (x, y=0 to 15), —CF2CF2O(CF2CF2CF2O)zCF2CF2— (z=1 to 15), —CF2CF2CF2O(CF2CF2CF2CF2)nCF2CF2CF2— (n=0 to 4). HOCH2CF2CF2O(CF2CF2CF2O)mCF2CF2CH2OCH2CH(OH)CH2OH . . . (2) (m is an integer).
    Type: Application
    Filed: December 16, 2015
    Publication date: November 23, 2017
    Applicant: SHOWA DENKO K.K.
    Inventors: Satoru NAKAMURA, Taining HUNG, Evance KUO, Daizo ENDO
  • Publication number: 20170011765
    Abstract: A magnetic recording medium 11 in which the outermost surface of a protective layer 3 on a lubricant layer 4 side contains carbon and nitrogen of 10 atomic % to 90 atomic %, the lubricant layer 4 is formed by being in contact with the outermost surface, and contains a compound A of Formula (1) and a compound B of Formula (2), a mass ratio (A/B) of the compound A with respect to the compound B is 0.2 to 0.3, the average molecular weights of the compounds A and B are 1,500 to 2,000 and 1,300 to 2,400, respectively, and the average film thickness is 0.5 nm to 2 nm. R1-C6H4OCH2CH(OH)CH2OCH2—R2-CH2OCH2CH(OH)CH2OH ??(1) (R1 is an alkoxy group having 1 to 4 carbon atoms. R2 is —CF2O(CF2CF2O)x(CF2O)yCF2—.
    Type: Application
    Filed: July 6, 2016
    Publication date: January 12, 2017
    Applicant: SHOWA DENKO K.K.
    Inventors: Satoru NAKAMURA, Taining HUNG, Evance KUO, Daizo ENDO
  • Patent number: 8628866
    Abstract: A magnetic recording medium that is capable of realizing both high magnetic permeability and antiferromagnetic coupling for a soft magnetic underlayer. Namely, a magnetic recording medium including at least a non-magnetic substrate on which is laminated a soft magnetic underlayer formed by antiferromagnetic coupling of a plurality of soft magnetic layers, and a perpendicular magnetic layer for which the axis of easy magnetization is oriented mainly perpendicularly to the non-magnetic substrate, wherein the soft magnetic layers contain Fe as a first main component, Co as a second main component, and also contain Ta, the soft magnetic underlayer is antiferromagnetically coupled using the second peak or a subsequently appearing peak of the antiferromagnetic coupling force, which changes according to the thickness of a spacer layer sandwiched between the plurality of soft magnetic layers, and the magnetic permeability of the soft magnetic underlayer is not less than 1,000 H/m.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: January 14, 2014
    Assignee: Showa Denko HD Singapore Pte Ltd.
    Inventors: Amarendra K Singh, Daizo Endo, Voon Siang Khoang, Xiao Chen
  • Publication number: 20110235211
    Abstract: A magnetic recording medium that is capable of realizing both high magnetic permeability and antiferromagnetic coupling for a soft magnetic underlayer. Namely, a magnetic recording medium including at least a non-magnetic substrate on which is laminated a soft magnetic underlayer formed by antiferromagnetic coupling of a plurality of soft magnetic layers, and a perpendicular magnetic layer for which the axis of easy magnetization is oriented mainly perpendicularly to the non-magnetic substrate, wherein the soft magnetic layers contain Fe as a first main component, Co as a second main component, and also contain Ta, the soft magnetic underlayer is antiferromagnetically coupled using the second peak or a subsequently appearing peak of the antiferromagnetic coupling force, which changes according to the thickness of a spacer layer sandwiched between the plurality of soft magnetic layers, and the magnetic permeability of the soft magnetic underlayer is not less than 1,000 H/m.
    Type: Application
    Filed: December 1, 2009
    Publication date: September 29, 2011
    Applicant: SHOWA DENKO HD SINGAPORE PTE LTD.
    Inventors: Amarendra K Singh, Daizo Endo, V S Khoang, Xiao Chen
  • Publication number: 20100159286
    Abstract: Disclosed is a perpendicular magnetic recording medium on a substrate. The perpendicular magnetic recording medium has a recording layer. The recording layer includes a first granular recording layer and a second granular recording layer. There may be an exchange layer between the first granular recording layer and the second granular recording layer. Additionally or alternatively, the ratio of saturation magnetization of the first granular recording layer and the second granular recording layer may be greater than 1 and/or the first granular recording layer may have a relatively high magnetic anisotropy compared to the second granular recording layer magnetic anisotropy. A forming method is also disclosed.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 24, 2010
    Applicant: Showa Denko HD Singapore Pte Ltd.
    Inventors: Amarendra Kumar SINGH, Daizo Endo
  • Patent number: 7550211
    Abstract: A magnetic recording medium includes an orientation adjusting layer, a nonmagnetic under layer, a nonmagnetic intermediate layer, a magnetic layer and a protective layer sequentially stacked on a nonmagnetic substrate provided on a first surface thereof with a texture streak and used for a magnetic disc. The nonmagnetic under layer contains at least a layer formed of a Cr—Mn-based alloy and possesses magnetic anisotropy having an axis of easy magnetization in a circumferential direction thereof. A magnetic recording and reproducing device includes the magnetic recording medium and a magnetic head for enabling information to be recorded in and reproduced from the magnetic recording medium.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: June 23, 2009
    Assignee: Showa Denko K.K.
    Inventors: Hiroshi Osawa, Shun Matsumoto, Daizo Endo
  • Publication number: 20070122659
    Abstract: A magnetic recording medium includes an orientation adjusting layer, a nonmagnetic under layer, a nonmagnetic intermediate layer, a magnetic layer and a protective layer sequentially stacked on a nonmagnetic substrate provided on a first surface thereof with a texture streak and used for a magnetic disc. The nonmagnetic under layer contains at least a layer formed of a Cr—Mn-based alloy and possesses magnetic anisotropy having an axis of easy magnetization in a circumferential direction thereof. A magnetic recording and reproducing device includes the magnetic recording medium and a magnetic head for enabling information to be recorded in and reproduced from the magnetic recording medium.
    Type: Application
    Filed: August 9, 2005
    Publication date: May 31, 2007
    Inventors: Hiroshi Osawa, Shun Matsumoto, Daizo Endo
  • Patent number: 5914152
    Abstract: A magnetic recording medium comprised of (i) a non-magnetic substrate such as glass or carbon, (ii) a silicon layer preferably having a thickness of about 20-3,000 angstroms, formed on the substrate, (iii) a layer composed of at least one element of the platinum group of the periodic table or its alloy or carbon, formed on the silicon layer, wherein the platinum group element or alloy is at least partially silicified with silicon diffusing from the adjacent silicon layer, and the carbon is rendered at least partially amorphous with silicon diffusing from the adjacent silicon layer, (iv) an undercoat composed of chromium or its alloy, formed on the layer of a platinum group element or alloy or carbon, (v) a magnetic layer composed of a cobalt alloy, formed on the undercoat, (vi) a protective carbon overcoat formed on the magnetic layer, and (vii) an optional lubricating layer formed on the protective overcoat.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: June 22, 1999
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Daizo Endo, Masato Fukushima, Shin-ichi Ogawa
  • Patent number: 5731070
    Abstract: A magnetic recording medium comprised of (i) a non-magnetic substrate such as glass or carbon, (ii) a silicon layer preferably having a thickness of about 20-3,000 angstroms, formed on the substrate, (iii) a layer composed of at least one element of the platinum group of the periodic table or its alloy or carbon, formed on the silicon layer, wherein the platinum group element or alloy is at least partially silicified with silicon diffusing from the adjacent silicon layer, and the carbon is rendered at least partially amorphous with silicon diffusing from the adjacent silicon layer, (iv) an undercoat composed of chromium or its alloy, formed on the layer of a platinum group element or alloy or carbon, (v) a magnetic layer composed of a cobalt alloy, formed on the undercoat, (vi) a protective carbon overcoat formed on the magnetic layer, and (vii) an optional lubricating layer formed on the protective overcoat.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: March 24, 1998
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Daizo Endo, Masato Fukushima, Shin-ichi Ogawa