Patents by Inventor Dajun Yuan

Dajun Yuan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932900
    Abstract: An example of an array includes a support, a cross-linked epoxy polyhedral oligomeric silsesquioxane (POSS) resin film on a surface of the support, and a patterned hydrophobic polymer layer on the cross-linked epoxy POSS resin film. The patterned hydrophobic polymer layer defines exposed discrete areas of the cross-linked epoxy POSS resin film, and a polymer coating is attached to the exposed discrete areas. Another example of an array includes a support, a modified epoxy POSS resin film on a surface of the support, and a patterned hydrophobic polymer layer on the modified epoxy POSS resin film. The modified epoxy POSS resin film includes a polymer growth initiation site, and the patterned hydrophobic polymer layer defines exposed discrete areas of the modified epoxy POSS resin film. A polymer brush is attached to the polymer growth initiation site in the exposed discrete areas.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: March 19, 2024
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Wayne N. George, Alexandre Richez, M. Shane Bowen, Andrew A. Brown, Dajun Yuan, Audrey Rose Zak, Sean M. Ramirez, Raymond Campos
  • Patent number: 11878299
    Abstract: Imprinted substrates are often used to produce miniaturized devices for use in electrical, optic and biochemical applications. Imprinting techniques, such as nanoimprinting lithography, may leave residues in the surface of substrates that affect bonding and decrease the quality of the produced devices. An imprinted substrate with residue-free region, or regions with a reduced amount of residue for improved bonding quality is introduced. Methods to produce imprinted substrates without residues from the imprinting process are also introduced. Methods include physical exclusion methods, selective etching methods and energy application methods. These methods may produce residue-free regions in the surface of the substrate that can be used to produce higher strength bonding.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: January 23, 2024
    Assignee: Illumina, Inc.
    Inventors: Hui Han, Dajun Yuan, M. Shane Bowen
  • Patent number: 11819843
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: November 21, 2023
    Assignee: Illumina, Inc.
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Patent number: 11702695
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: July 18, 2023
    Assignee: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20230109614
    Abstract: An example of an array includes a support, a cross-linked epoxy polyhedral oligomeric silsesquioxane (POSS) resin film on a surface of the support, and a patterned hydrophobic polymer layer on the cross-linked epoxy POSS resin film. The patterned hydrophobic polymer layer defines exposed discrete areas of the cross-linked epoxy POSS resin film, and a polymer coating is attached to the exposed discrete areas. Another example of an array includes a support, a modified epoxy POSS resin film on a surface of the support, and a patterned hydrophobic polymer layer on the modified epoxy POSS resin film. The modified epoxy POSS resin film includes a polymer growth initiation site, and the patterned hydrophobic polymer layer defines exposed discrete areas of the modified epoxy POSS resin film. A polymer brush is attached to the polymer growth initiation site in the exposed discrete areas.
    Type: Application
    Filed: October 25, 2022
    Publication date: April 6, 2023
    Inventors: Wayne N. George, Alexandre Richez, M. Shane Bowen, Andrew A. Brown, Dajun Yuan, Audrey Rose Zak, Sean M. Ramirez, Raymond Campos
  • Patent number: 11585757
    Abstract: A device includes a plurality of imaging pixels in a spatial pattern with a formation of features disposed over the pixels. A first and a second feature of the formation of features are disposed over a first pixel. A first luminophore is disposed within or over the first feature. A second luminophore is disposed within or over the second feature. A structured illumination source is to direct at least a portion of first photons in an illumination pattern to the first feature at a first time, and to direct at least a portion of second photons in the illumination pattern to the second feature at a second time. The structured illumination source includes an illumination pattern generator having an illumination pattern generator actuator connected to the illumination pattern generator to cause the illumination pattern to translate or rotate relative to the formation of features.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: February 21, 2023
    Assignee: Illumina, Inc.
    Inventors: Dajun Yuan, Liangliang Qiang, Minghao Guo
  • Publication number: 20230002759
    Abstract: A structured substrate includes a substrate body having an active side. The substrate body includes reaction cavities that open along the active side and interstitial regions that separate the reaction cavities. The structured substrate includes an ensemble amplifier positioned within each of the reaction cavities. The ensemble amplifier includes a plurality of nanostructures configured to at least one of amplify electromagnetic energy that propagates into the corresponding reaction cavity or amplify electromagnetic energy that is generated within the corresponding reaction cavity.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Inventors: M. Shane Bowen, Dajun Yuan
  • Publication number: 20220410146
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Publication number: 20220381777
    Abstract: Provided herein are structures and methods for detecting one or more analyte molecules present in a sample. In some embodiments, the one or more analyte molecules form a complex in solution with a supramolecular structure. The supramolecular structures of the complex may be detectable such that binding of the analyte molecule to a binding site of an array is detectable via one or more features of the supramolecular structure. A binding site of an array includes capture molecules to capture bound complexes to facilitate detection.
    Type: Application
    Filed: May 26, 2022
    Publication date: December 1, 2022
    Inventors: Ashwin Gopinath, Paul Rothemund, Rishabh Shetty, Shane Bowen, Rachel Galimidi, Dajun Yuan
  • Patent number: 11512339
    Abstract: An example of an array includes a support, a cross-linked epoxy polyhedral oligomeric silsesquioxane (POSS) resin film on a surface of the support, and a patterned hydrophobic polymer layer on the cross-linked epoxy POSS resin film. The patterned hydrophobic polymer layer defines exposed discrete areas of the cross-linked epoxy POSS resin film, and a polymer coating is attached to the exposed discrete areas. Another example of an array includes a support, a modified epoxy POSS resin film on a surface of the support, and a patterned hydrophobic polymer layer on the modified epoxy POSS resin film. The modified epoxy POSS resin film includes a polymer growth initiation site, and the patterned hydrophobic polymer layer defines exposed discrete areas of the modified epoxy POSS resin film. A polymer brush is attached to the polymer growth initiation site in the exposed discrete areas.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: November 29, 2022
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Wayne N. George, Alexandre Richez, M. Shane Bowen, Andrew A. Brown, Dajun Yuan, Audrey Rose Zak, Sean M. Ramirez, Raymond Campos
  • Publication number: 20220362971
    Abstract: A system including a container for holding a photosensitive medium adapted to change states upon exposure to a light source, an optical imaging system, configured to move above the container holding the photosensitive medium, and having the light source, and a control system configured to: slice a digital model of a three-dimensional object into a slice having a cross-section, generate a build cross-section by filling a two-dimensional image with one or more copies of the cross-section, add to the build cross-section a conformal lattice to fill space in the build cross-section around the one or more copies of the cross-section, and control movement of the optical imaging system above the container to cure a portion of the photosensitive medium corresponding to the build cross-section to produce a layer of a three-dimensional object.
    Type: Application
    Filed: March 21, 2022
    Publication date: November 17, 2022
    Inventors: Suman Das, Dajun Yuan, Anirudh Rudraraju, Paul Cilino
  • Publication number: 20220331792
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 20, 2022
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Patent number: 11466268
    Abstract: A structured substrate includes a substrate body having an active side. The substrate body includes reaction cavities that open along the active side and interstitial regions that separate the reaction cavities. The structured substrate includes an ensemble amplifier positioned within each of the reaction cavities. The ensemble amplifier includes a plurality of nanostructures configured to at least one of amplify electromagnetic energy that propagates into the corresponding reaction cavity or amplify electromagnetic energy that is generated within the corresponding reaction cavity.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: October 11, 2022
    Assignee: ILLUMINA, INC.
    Inventors: M. Shane Bowen, Dajun Yuan
  • Patent number: 11442017
    Abstract: An inspection apparatus is provided that comprises an optical target including a solid host material and a fluorescing material embedded in the solid host material. The solid host material has a predetermined phonon energy HOSTPE. The fluorescing material exhibits a select ground energy level and a target excitation (TE) energy level separated from the ground energy level by a first energy gap corresponding to a fluorescence emission wavelength of interest. The fluorescing material has a next lower lying (NLL) energy level relative to the TE energy level. The NLL energy level is spaced a second energy gap FMEG2 below the TE energy level, wherein a ratio of the FMEG2/HOSTPE is three or more.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: September 13, 2022
    Assignee: ILLUMINA, INC.
    Inventors: John Gerhardt Earney, Joseph Francis Pinto, M. Shane Bowen, Michael S. Graige, Arthur Pitera, Bala Murali K. Venkatesan, Dajun Yuan
  • Publication number: 20220275443
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Application
    Filed: May 5, 2022
    Publication date: September 1, 2022
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20220250066
    Abstract: An interposer for a flow cell comprises a base layer having a first surface and a second surface opposite the first surface. The base layer comprises black polyethylene terephthalate (PET). A first adhesive layer is disposed on the first surface of the base layer. The first adhesive layer comprises methyl acrylic adhesive. A second adhesive layer is disposed on the second surface of the base layer. The second adhesive layer comprises methyl acrylic adhesive. A plurality of microfluidic channels extends through each of the base layer, the first adhesive layer, and the second adhesive layer.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 11, 2022
    Applicant: ILLUMINA, Inc.
    Inventors: Maxwell Zimmerley, LiangLiang Qiang, M. Shane Bowen, Steven H. Modiano, Dajun Yuan, Randall Smith, Arthur J. Pitera, Hai Quang Tran, Gerald Kreindl
  • Patent number: 11332788
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: May 17, 2022
    Assignee: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20220134333
    Abstract: A method for patterning flow cell substrates using photo-initiated chemical reactions that includes fabricating a planar waveguide flow cell by forming a layer of light coupling gratings on a glass substrate layer; depositing a core layer on the layer of light coupling gratings; depositing a cladding layer on the core layer; and forming nanowells in the cladding layer; silanizing the cladding layer; coating the silanized cladding layer and nanowells with a first group of reactants; introducing a second group of reactants into the nanowells, wherein the second group of reactants includes a target reactant and a light-sensitive photoinitiator system; coupling a light source to the light coupling gratings and directing light internally within the planar waveguide flow cell for photo-initiating a chemical reaction between the first and second groups of reactants, wherein the photo-initiated chemical reaction covalently binds the target reactant to only the bottom portion of each nanowell.
    Type: Application
    Filed: August 10, 2020
    Publication date: May 5, 2022
    Inventors: Steven Modiano, Dajun Yuan, Randall Smith
  • Patent number: 11318462
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: May 3, 2022
    Assignee: Illumina, Inc.
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Patent number: 11279062
    Abstract: A system including: a container for holding a photosensitive medium adapted to change states upon exposure to a light source; an optical imaging system, configured to move above the container holding the photosensitive medium, and having the light source; and a control system configured to: slice a digital model of a three-dimensional object into a slice having a cross section; generate a build cross section by filling a two-dimensional image with one or more copies of the cross section; add to the build cross section a conformal lattice to fill space in the build cross section around the one or more copies of the cross section; and control movement of the optical imaging system above the container to cure a portion of the photosensitive medium corresponding to the build cross section to produce a layer of a three-dimensional object.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: March 22, 2022
    Assignee: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Suman Das, Dajun Yuan, Anirudh Rudraraju, Paul Cilino