Patents by Inventor Dale A. Michaels

Dale A. Michaels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240152139
    Abstract: A system and method for operation of an autonomous vehicle (AV) yard truck is provided. A processor facilitates autonomous movement of the AV yard truck, and connection to and disconnection from trailers. A plurality of sensors are interconnected with the processor that sense terrain/objects and assist in automatically connecting/disconnecting trailers. A server, interconnected, wirelessly with the processor, that tracks movement of the truck around and determines locations for trailer connection and disconnection. A door station unlatches/opens rear doors of the trailer when adjacent thereto, securing them in an opened position via clamps, etc. The system computes a height of the trailer, and/or if landing gear of the trailer is on the ground and interoperates with the fifth wheel to change height, and whether docking is safe, allowing a user to take manual control, and optimum charge time(s). Reversing sensors/safety, automated chocking, and intermodal container organization are also provided.
    Type: Application
    Filed: October 9, 2023
    Publication date: May 9, 2024
    Inventors: Andrew F. Smith, Lawrence S. Klein, Stephen A. Langenderfer, Martin E. Sotola, Vikas Bahl, Mark H. Rosenblum, Peter James, Dale Dee Rowley, Matthew S. Johannes, Gary Michael Seminara, Jeremy M. Nett
  • Patent number: 11975737
    Abstract: This provides locations for mounting controllers and processing components that effectively employ the roof within a frame covered by a cowling so as to avoid exposure to weather and the environment. The roof is also employed to provide a sensor bar that extends across the vehicle width for a distance that does not interfere with normal vehicle function or generate potential overhangs, which can inadvertently engage objects or vehicles. The bar is sufficient in size and shape so as to allow mounting of a plurality of types of sensors on its top surface and/or recessed within front or rear edges. Such sensors can include visual light cameras for machine vison processes and/or LIDAR of various types and cooperage areas/fields of view—some of which can be recessed within a hollow region of the bar. Additional sensors can be mounted on the truck cab and/or chassis, including visual-light cameras and radars.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: May 7, 2024
    Assignee: Outrider Technologies, Inc.
    Inventors: Gary Michael Seminara, James Christopher McKenna, Michael Patrick Cutter, Jonathan Record, Dale Dee Rowley, Keith Massie, Alexander Fink, Critt Coburn, Gary Mckinney, Lawrence S. Klein
  • Publication number: 20240134087
    Abstract: A blast modeling system may generate a site model based on blast input data. The blast input data may include blasthole data, bench information, and geology input data. The site model may comprise a plurality of distinct elements representing rock masses. The blast modeling system may simulate a blast by determine initial pressures in each blasthole caused by a detonation of an explosive. The blast modeling system may determine a heave of the blast based in part on the initial pressures, and display a simulation that is based in part on the heave.
    Type: Application
    Filed: October 10, 2023
    Publication date: April 25, 2024
    Inventors: Charles Michael Lownds, A B M Abdul Ali Bhuiyan, Dale S. Preece
  • Publication number: 20240131886
    Abstract: A system and method for operation of an autonomous vehicle (AV) yard truck is provided. A processor facilitates autonomous movement of the AV yard truck, and connection to and disconnection from trailers. A plurality of sensors are interconnected with the processor that sense terrain/objects and assist in automatically connecting/disconnecting trailers. A server, interconnected, wirelessly with the processor, that tracks movement of the truck around and determines locations for trailer connection and disconnection. A door station unlatches/opens rear doors of the trailer when adjacent thereto, securing them in an opened position via clamps, etc. The system computes a height of the trailer, and/or if landing gear of the trailer is on the ground and interoperates with the fifth wheel to change height, and whether docking is safe, allowing a user to take manual control, and optimum charge time(s). Reversing sensors/safety, automated chocking, and intermodal container organization are also provided.
    Type: Application
    Filed: July 23, 2023
    Publication date: April 25, 2024
    Inventors: Andrew F. Smith, Lawrence S. Klein, Stephen A. Langenderfer, Martin E. Sotola, Vikas Bahl, Mark H. Rosenblum, Peter James, Dale Dee Rowley, Matthew S. Johannes, Gary Michael Seminara, Jeremy M. Nett, Christopher T. Bate, Michael Patrick Cutter
  • Patent number: 11952305
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 9, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Patent number: 11938842
    Abstract: A vehicle includes a powertrain having an electric machine configured to power driven wheels, an accelerator pedal, and friction brakes. A vehicle controller is programmed to, with the vehicle being in a one-pedal driving mode: in response to a braking torque capacity of the powertrain exceeding a target braking torque that is based on a position of the accelerator pedal, command a torque, that is equal to the target braking torque, from the powertrain such that the vehicle is slowed using the powertrain without application of the friction brakes, and, in response to the braking torque capacity of the powertrain being less than the target braking torque, command torques from the powertrain and the friction brakes such that the target braking torque is satisfied and the vehicle is slowed using the powertrain and the friction brakes.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: March 26, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Dale Scott Crombez, Bryan Michael Bolger, Alexander McCollough, Sergey Gennadievich Semenov, Brandon Jay Woodland
  • Patent number: 11804021
    Abstract: Described herein are systems and methods of processing immobilization molds for application of treatment, A computing system may generate a three-dimensional mold model of immobilization mold within with a subject is to be positioned for application of a treatment. The computing system may subtract a three-dimensional scan of at least a portion of the subject from the three-dimensional mold model to define an opening therein. The computing system may remove, from the three-dimensional mold model, a first portion to define an imprint in the opening from a first axis along which the subject is to enter. The computing system may remove, from a second portion of the three-dimensional mold model remaining with the removal of the first portion, inward protrusions into the imprint of relative to the second axis intersecting the first axis.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: October 31, 2023
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Joseph Owen Deasy, Paul R. Booth, Nancy Lee, Dale Michael Lovelock
  • Publication number: 20230169743
    Abstract: Described herein are systems and methods of processing immobilization molds for application of treatment, A computing system may generate a three-dimensional mold model of immobilization mold within with a subject is to be positioned for application of a treatment. The computing system may subtract a three-dimensional scan of at least a portion of the subject from the three-dimensional mold model to define an opening therein. The computing system may remove, from the three-dimensional mold model, a first portion to define an imprint in the opening from a first axis along which the subject is to enter. The computing system may remove, from a second portion of the three-dimensional mold model remaining with the removal of the first portion, inward protrusions into the imprint of relative to the second axis intersecting the first axis.
    Type: Application
    Filed: January 30, 2023
    Publication date: June 1, 2023
    Applicant: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Joseph Owen DEASY, Paul R. BOOTH, Nancy LEE, Dale Michael LOVELOCK
  • Patent number: 11568618
    Abstract: Described herein are systems and methods of processing immobilization molds for application of treatment, A computing system may generate a three-dimensional mold model of immobilization mold within with a subject is to be positioned for application of a treatment. The computing system may subtract a three-dimensional scan of at least a portion of the subject from the three-dimensional mold model to define an opening therein. The computing system may remove, from the three-dimensional mold model, a first portion to define an imprint in the opening from a first axis along which the subject is to enter. The computing system may remove, from a second portion of the three-dimensional mold model remaining with the removal of the first portion, inward protrusions into the imprint of relative to the second axis intersecting the first axis.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: January 31, 2023
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Joseph Owen Deasy, Paul R. Booth, Nancy Lee, Dale Michael Lovelock
  • Patent number: 11361527
    Abstract: The present disclosure provides automated robotic microscopy systems that facilitate high throughput and high content analysis of biological samples, such as living cells and/or tissues. In certain aspects, the systems are configured to reduce user intervention relative to existing technologies, and allow for precise return to and re-imaging of the same field (e.g., the same cell) that has been previously imaged. This capability enables experiments and testing of hypotheses that deal with causality over time with greater precision and throughput than conventional microscopy methods.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: June 14, 2022
    Assignee: The J. David Gladstone Institutes
    Inventors: Steven M. Finkbeiner, Dale Michael Ando, Aaron C. Daub
  • Publication number: 20210398215
    Abstract: A system and method for using asymmetrical offsets for products in a risk management analysis system are disclosed. Conventional systems assign symmetrical offsets for products, that is, if two products have an 80% correlation they each would be assigned an offset of 80% with respect to each other. However, it is desirable to allow for asymmetrical offsets. In the disclosed system and method, when two products have a correlation of 80%, one may be assigned an offset of 75% and the other may be assigned an offset of 80%. There are many reasons to vary the offset between the products. The varying offset may reflect an asymmetry in the risk in one of the products, such as being traded in an illiquid market or in a less desirable venue. The varying offset may correct for an imbalance in spread credits due to special charges from intra spreading.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Inventors: Dmitriy Glinberg, Tae S. Yoo, Dale Michaels, Edward M. Gogol
  • Patent number: 11138660
    Abstract: A system and method for using asymmetrical offsets for products in a risk management analysis system are disclosed. Conventional systems assign symmetrical offsets for products, that is, if two products have an 80% correlation they each would be assigned an offset of 80% with respect to each other. However, it is desirable to allow for asymmetrical offsets. In the disclosed system and method, when two products have a correlation of 80%, one may be assigned an offset of 75% and the other may be assigned an offset of 80%. There are many reasons to vary the offset between the products. The varying offset may reflect an asymmetry in the risk in one of the products, such as being traded in an illiquid market or in a less desirable venue. The varying offset may correct for an imbalance in spread credits due to special charges from intra spreading.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: October 5, 2021
    Assignee: Chicago Mercantile Exchange Inc.
    Inventors: Dmitriy Glinberg, Tae S. Yoo, Dale Michaels, Edward M. Gogol
  • Publication number: 20210090716
    Abstract: Described herein are systems and methods of processing immobilization molds for application of treatment, A computing system may generate a three-dimensional mold model of immobilization mold within with a subject is to be positioned for application of a treatment. The computing system may subtract a three-dimensional scan of at least a portion of the subject from the three-dimensional mold model to define an opening therein. The computing system may remove, from the three-dimensional mold model, a first portion to define an imprint in the opening from a first axis along which the subject is to enter. The computing system may remove, from a second portion of the three-dimensional mold model remaining with the removal of the first portion, inward protrusions into the imprint of relative to the second axis intersecting the first axis.
    Type: Application
    Filed: July 27, 2018
    Publication date: March 25, 2021
    Applicant: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Joseph Owen DEASY, Paul R. BOOTH, Nancy LEE, Dale Michael LOVELOCK
  • Publication number: 20200089986
    Abstract: The present disclosure provides automated robotic microscopy systems that facilitate high throughput and high content analysis of biological samples, such as living cells and/or tissues. In certain aspects, the systems are configured to reduce user intervention relative to existing technologies, and allow for precise return to and re-imaging of the same field (e.g., the same cell) that has been previously imaged. This capability enables experiments and testing of hypotheses that deal with causality over time with greater precision and throughput than conventional microscopy methods.
    Type: Application
    Filed: September 26, 2019
    Publication date: March 19, 2020
    Inventors: Steven M. Finkbeiner, Dale Michael Ando, Aaron C. Daub
  • Patent number: 10474920
    Abstract: The present disclosure provides automated robotic microscopy systems that facilitate high throughput and high content analysis of biological samples, such as living cells and/or tissues. In certain aspects, the systems are configured to reduce user intervention relative to existing technologies, and allow for precise return to and re-imaging of the same field (e.g., the same cell) that has been previously imaged. This capability enables experiments and testing of hypotheses that deal with causality over time with greater precision and throughput than conventional microscopy methods.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: November 12, 2019
    Assignee: The J. David Gladstone Institutes
    Inventors: Steven M. Finkbeiner, Dale Michael Ando, Aaron C. Daub
  • Publication number: 20180293653
    Abstract: A system and method for using asymmetrical offsets for products in a risk management analysis system are disclosed. Conventional systems assign symmetrical offsets for products, that is, if two products have an 80% correlation they each would be assigned an offset of 80% with respect to each other. However, it is desirable to allow for asymmetrical offsets. In the disclosed system and method, when two products have a correlation of 80%, one may be assigned an offset of 75% and the other may be assigned an offset of 80%. There are many reasons to vary the offset between the products. The varying offset may reflect an asymmetry in the risk in one of the products, such as being traded in an illiquid market or in a less desirable venue. The varying offset may correct for an imbalance in spread credits due to special charges from intra spreading.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 11, 2018
    Inventors: Dmitriy Glinberg, Tae S. Yoo, Dale Michaels, Edward M. Gogol
  • Patent number: 10037573
    Abstract: Systems and methods are disclosed for processing binary options (also referred to as digital options) in existing clearing systems, such as futures clearing systems. The binary option is treated, or processed, similar to standard options on a non-tradeable cash-settled underlying futures contract. A hypothetical instrument, referred to as a book instrument is created to facilitate clearing of the binary option. The book instrument has an expiration date after the expiration of the binary option, such as the day after the expiration of the binary option. For each binary option that expires in the money, a transaction is created for the book instrument future. The underlying book future has an assigned price that is a fixed amount less that the final price for the underlying statistical or actual value of the binary option at expiration. Transactions are loaded in the clearing system and processed and all positions are liquidated.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: July 31, 2018
    Assignee: Chicago Mercantile Exchange, Inc.
    Inventors: Edward Gogol, Dmitriy Glinberg, Dale Michaels
  • Patent number: D1020609
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 2, 2024
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: David Michael Pribula, Dale Edward Umstot
  • Patent number: D1020616
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: April 2, 2024
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: David Michael Pribula, Dale Edward Umstot, Robert John Hermann, Michael William Diehl
  • Patent number: D1021761
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: April 9, 2024
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: David Michael Pribula, Dale Edward Umstot, Robert John Hermann, Michael William Diehl