Patents by Inventor Dale Harrison

Dale Harrison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7126131
    Abstract: A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: October 24, 2006
    Assignee: MetroSol, Inc.
    Inventor: Dale A. Harrison
  • Publication number: 20060208198
    Abstract: A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized.
    Type: Application
    Filed: April 27, 2006
    Publication date: September 21, 2006
    Inventor: Dale Harrison
  • Publication number: 20060192958
    Abstract: A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized.
    Type: Application
    Filed: April 27, 2006
    Publication date: August 31, 2006
    Inventor: Dale Harrison
  • Patent number: 7067818
    Abstract: A spectroscopy system is provided which operates in the vacuum ultra-violet spectrum. More particularly, a system utilizing reflectometry techniques in the vacuum ultraviolet spectrum is provided for use in metrology applications. The system may further include the use of an array detector in combination with an imaging spectrometer. In this manner data for multiple wavelengths may be simultaneously collected. Moreover, the multiple wavelengths of data may be collected simultaneously for a two dimensional sample area. The system may further include the use of a fixed diffraction grating and does not require the use of polarizing elements. To ensure accurate and repeatable measurement, the environment of the optical path is controlled. The optical path may include a controlled environmental chamber in which non-absorbing purge gases are present or in which vacuum evacuation techniques are utilized. The controlled environment may further include a separate instrument chamber and a separate sample chamber.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: June 27, 2006
    Assignee: Metrosol, Inc.
    Inventor: Dale A. Harrison
  • Patent number: 7026626
    Abstract: A spectroscopy system is provided which operates in the vacuum ultraviolet spectrum. More particularly, a system utilizing reflectometry techniques in the vacuum ultraviolet spectrum is provided for use in metrology applications. To ensure accurate and repeatable measurement, the environment of the optical path is controlled to limit absorption effects of gases that may be present in the optical path. The VUV reflectometer may be utilized to monitor a wide range of data in a semiconductor processing environment. For example, the techniques may be used for measuring thicknesses, optical properties, composition, porosity and roughness of a film or stack of films. Further, the VUV techniques and apparatus may be used to characterize critical dimensions and other features of a device. The VUV reflectometer system may be utilized as a stand alone tool, or the relatively compact nature of the system may be taken advantage of such that the system is incorporated into other process tools.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: April 11, 2006
    Assignee: MetroSol, Inc.
    Inventor: Dale A. Harrison
  • Publication number: 20050006590
    Abstract: A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized.
    Type: Application
    Filed: July 30, 2004
    Publication date: January 13, 2005
    Inventor: Dale Harrison
  • Publication number: 20050001173
    Abstract: A spectroscopy system is provided which operates in the vacuum ultraviolet spectrum. More particularly, a system utilizing reflectometry techniques in the vacuum ultraviolet spectrum is provided for use in metrology applications. To ensure accurate and repeatable measurement, the environment of the optical path is controlled to limit absorption effects of gases that may be present in the optical path. The VUV reflectometer may be utilized to monitor a wide range of data in a semiconductor processing environment. For example, the techniques may be used for measuring thicknesses, optical properties, composition, porosity and roughness of a film or stack of films. Further, the VUV techniques and apparatus may be used to characterize critical dimensions and other features of a device. The VUV reflectometer system may be utilized as a stand alone tool, or the relatively compact nature of the system may be taken advantage of such that the system is incorporated into other process tools.
    Type: Application
    Filed: September 23, 2003
    Publication date: January 6, 2005
    Inventor: Dale Harrison
  • Publication number: 20050001172
    Abstract: A spectroscopy system is provided which operates in the vacuum ultra-violet spectrum. More particularly, a system utilizing reflectometry techniques in the vacuum ultraviolet spectrum is provided for use in metrology applications. The system may further include the use of an array detector in combination with an imaging spectrometer. In this manner data for multiple wavelengths may be simultaneously collected. Moreover, the multiple wavelengths of data may be collected simultaneously for a two dimensional sample area. The system may further include the use of a fixed diffraction grating and does not require the use of polarizing elements. To ensure accurate and repeatable measurement, the environment of the optical path is controlled. The optical path may include a controlled environmental chamber in which non-absorbing purge gases are present or in which vacuum evacuation techniques are utilized. The controlled environment may further include a separate instrument chamber and a separate sample chamber.
    Type: Application
    Filed: September 23, 2003
    Publication date: January 6, 2005
    Inventor: Dale Harrison
  • Publication number: 20050002037
    Abstract: A spectroscopy system is provided which operates in the vacuum ultraviolet spectrum. More particularly, a system utilizing reflectometry techniques in the vacuum ultraviolet spectrum is provided for use in metrology applications. To ensure accurate and repeatable measurement, the environment of the optical path is controlled to limit absorption effects of gases that may be present in the optical path. To account for absorption effects that may still occur, the length of the optical path is minimized. To further account for absorption effects, the reflectance data may be referenced to a relative standard. Referencing is particularly advantageous in the VUV reflectometer due to the low available photon flux and the sensitivity of recorded data to the composition of the gaseous medium contained with the optical path. Thus, errors that may be introduced by changes in the controlled environment may be reduced.
    Type: Application
    Filed: September 23, 2003
    Publication date: January 6, 2005
    Inventor: Dale Harrison
  • Patent number: 6710865
    Abstract: The present invention provides a method for inferring optical parameters of a sample in a predictive spectral range by use of the known values of the optical parameters in a predetermined measurement spectral range. The method of the present invention capitalizes on the Forouhi-Bloomer dispersion equations for the optical constants n and k.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: March 23, 2004
    Assignee: N&K Technology, Inc.
    Inventors: Abdul Rahim Forouhi, Dale A. Harrison, Erik Maiken, John C. Lam
  • Patent number: 6594025
    Abstract: The present invention provides a method for monitoring a modifying-process taking place in a thin-film sample and thereby characterizing the sample thus modified, wherein the modifying-process is performed for purpose of improving physical properties of the sample. The present invention further provides a monitoring tool for characterizing various thin-film processes. Advantages of the method of the present invention are manifest in its non-intrusive nature, fast (or real-time) response, robust sensitivity, and versatility in a variety of thin-film processes. Another inherent advantage of the present invention is that an assortment of the “n&k” parameters can be obtained by using only measurement tool, in contrast to two (or more) simultaneous measurement tools used in the prior art.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: July 15, 2003
    Assignee: N&K Technology. Inc.
    Inventors: Abdul Rahim Forouhi, Dale A. Harrison, Eric Maiken, John C. Lam
  • Publication number: 20030053081
    Abstract: The present invention provides a method for monitoring a modifying-process taking place in a thin-film sample and thereby characterizing the sample thus modified, wherein the modifying-process is performed for purpose of improving physical properties of the sample. The present invention further provides a monitoring tool for characterizing various thin-film processes. Advantages of the method of the present invention are manifest in its non-intrusive nature, fast (or real-time) response, robust sensitivity, and versatility in a variety of thin-film processes. Another inherent advantage of the present invention is that an assortment of the “n&k” parameters can be obtained by using only measurement tool, in contrast to two (or more) simultaneous measurement tools used in the prior art.
    Type: Application
    Filed: July 12, 2001
    Publication date: March 20, 2003
    Inventors: Abdul Rahim Forouhi, Dale A. Harrison, Erik Maiken, John C. Lam
  • Publication number: 20020113957
    Abstract: The present invention provides a method for inferring optical parameters of a sample in a predictive spectral range by use of the known values of the optical parameters in a predetermined measurement spectral range. The method of the present invention capitalizes on the Forouhi-Bloomer dispersion equations for the optical constants n and k.
    Type: Application
    Filed: September 14, 2001
    Publication date: August 22, 2002
    Inventors: Abdul Rahim Forouhi, Dale A. Harrison, Erik Maiken, John C. Lam
  • Publication number: 20020097493
    Abstract: A graded anti-reflective coating (ARC) with one or more layers has a bottom layer that is highly absorbing at the lithographic wavelength, and one or more layers between the substrate and the resist layer having inhomogeneous optical constants. The refractive indices are matched across layer interfaces, and the optical constants vary smoothly through the layer thicknesses. In each layer the extinction coefficient and the refractive index have independently selectable values and gradients. This ARC structure provides almost total absorption in the bottom layer and near-zero reflection at the resist interface and all other intermediate interfaces. Layers are preferably of inorganic materials, typically SiOxNy. Because of its highly absorbing bottom layer, an ARC according to an embodiment of the present invention works effectively over diverse substrate materials for a variety of lithographic wavelengths. It provides great latitude of manufacturing tolerances for thicknesses and optical constants.
    Type: Application
    Filed: December 20, 2001
    Publication date: July 25, 2002
    Inventors: Guoguang Li, Dale A. Harrison, Abdul Rahim Forouhi
  • Patent number: 6392756
    Abstract: A method and an apparatus for optically determining a physical parameter such as thickness t, index of refraction n, extinction coefficient k or a related physical parameter such as energy bandgap Eg of a thin film. A test beam having a wavelength range &Dgr;&lgr; is used to illuminate the thin film after it is deposited on a complex substrate which has at least two layers and exhibits a non-monotonic and an appreciably variable substrate optical response over wavelength range &Dgr;&lgr;. Alternatively, the thin film can be deposited between the at least two layers of the complex substrate. A measurement of a total optical response, consisting of the substrate optical response and an optical response difference due to the thin film is performed over wavelength range &Dgr;&lgr;. The at least two layers making up the complex substrate are chosen such that the effect of multiple internal reflections in the complex substrate and the film is maximized.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: May 21, 2002
    Assignee: N&K Technology, Inc.
    Inventors: Guoguang Li, Hongwei Zhu, Dale A. Harrison, Abdul Rahim Forouhi, Weilu Xu
  • Patent number: 6379014
    Abstract: A graded anti-reflective coating (ARC) with one or more layers has a bottom layer that is highly absorbing at the lithographic wavelength, and one or more layers between the substrate and the resist layer having inhomogeneous optical constants. The refractive indices are matched across layer interfaces, and the optical constants vary smoothly through the layer thicknesses. In each layer the extinction coefficient and the refractive index have independently selectable values and gradients. This ARC structure provides almost total absorption in the bottom layer and near-zero reflection at the resist interface and all other intermediate interfaces. Layers are preferably of inorganic materials, typically SiOxNy. Because of its highly absorbing bottom layer, an ARC according to an embodiment of the present invention works effectively over diverse substrate materials for a variety of lithographic wavelengths. It provides great latitude of manufacturing tolerances for thicknesses and optical constants.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: April 30, 2002
    Assignee: N & K Technology, Inc.
    Inventors: Guoguang Li, Dale A. Harrison, Abdul Rahim Forouhi
  • Patent number: 6327035
    Abstract: A method and apparatus for optically determining a physical parameter a pattern made up of features and disposed on an underlayer. The physical parameter can be, e.g., feature width, relative feature size, feature thickness, index of refraction n or extinction coefficient k and is determined from a response light generated upon illumination of the pattern and underlayer. The response light, e.g. light transmitted by or reflected from the pattern and from the underlayer is analyzed and broken down into response light fractions including an underlayer light fraction and a feature light fraction as well as any other background light fractions making up the response light. The physical parameter of the pattern is determined from the response light fractions and reference physical parameters) of the underlayer, which are either known a priori or determined.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: December 4, 2001
    Assignee: NSH Technology, Inc.
    Inventors: Guoguang Li, Dale A. Harrison, Abdul Rahim Forouhi
  • Patent number: 6091485
    Abstract: A method and apparatus for optically determining a physical parameter of an underlayer such as the underlayer refractive index N.sub.u, extinction coefficient k.sub.u and/or thickness t.sub.u through a top layer having a first top layer thickness t.sub.1 and an assigned refractive index index n.sub.t and coefficient of extinction k.sub.t. The values of index n.sub.t and extinction coefficient k.sub.t can be estimated, optically determined or assigned based on prior knowledge. In a subsequent step a first reflectance R.sub.1 is measured over a wavelength range .DELTA..lambda. by using a test beam spanning that wavelength range. Then, a second reflectance R.sub.2 of the top layer and underlayer is measured using the test beam spanning wavelength range .DELTA..lambda. at a second top layer thickness t.sub.2. In a calculation step the physical parameter of the underlayer is determined from the first reflectance measurement R.sub.1, the second reflectance measurement R.sub.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: July 18, 2000
    Assignee: N & K Technology, Inc.
    Inventors: Guoguang Li, Hongwei Zhu, Dale A. Harrison, Abdul Rahim Forouhi, Weilu Xu