Patents by Inventor Dale Robert Powers

Dale Robert Powers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12006246
    Abstract: A method of producing soot, including: combusting a first fuel stream and a first oxidizer at a burner face; combusting a second fuel stream and a second oxidizer at the burner face, wherein the second fuel stream and the second oxidizer are premixed in advance of the burner face and a second equivalence ratio of the second fuel stream and the second oxidizer is less than about 1; and combusting a silicon-containing fuel into a plurality of soot particles, wherein the second fuel stream and the second oxidizer are combusted between the first fuel stream and the silicon-containing fuel. Applying this method of producing soot to deposit a preform suitable for the manufacture of optical fibers.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: June 11, 2024
    Assignee: Corning Incorporated
    Inventors: Manoj Agrawal, Dale Robert Powers, Fei Xia
  • Patent number: 11952305
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 9, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Publication number: 20230406752
    Abstract: A method of heating an optical fiber, the method including flowing gas from a common gas channel into one or more gas outlets of a burner, the common gas channel encircling an aperture of the burner. The method further including igniting the gas to form a flame and heating the fiber with the flame as the fiber passes through the aperture. The one or more gas outlets opening into the aperture such that each gas outlet has a gas outlet bore terminating at an inward-facing wall of the burner that defines the aperture. And the gas outlet bore being oriented at an angle ?1 defined between the gas outlet bore and the inward-facing wall of the burner, downstream of the gas outlet bore, that is greater than or equal to 10 degrees and less than or equal to 70 degrees.
    Type: Application
    Filed: May 17, 2023
    Publication date: December 21, 2023
    Inventors: Nikolaos Pantelis Kladias, Dale Robert Powers, Vincent Matteo Tagliamonti, Chunfeng Zhou
  • Patent number: 11752520
    Abstract: Methods for producing a nanotextured surface on a substrate include forming nanoparticles from a precursor within a stream of a carrier gas. Methods include heating a surface of a substrate facing the carrier gas. Methods comprise delivering the nanoparticles to the surface of the substrate facing the carrier gas to produce the nanotextured surface.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: September 12, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Jiangwei Feng, Guisong Lu, Dale Robert Powers, He Wang, Huiqing Wu
  • Patent number: 11708291
    Abstract: Methods for modifying multi-mode optical fiber manufacturing processes are disclosed. In one embodiment, a method for modifying a process for manufacturing multi-mode optical fiber includes measuring at least one characteristic of a multi-mode optical fiber. The at least one characteristic is a modal bandwidth or a differential mode delay at one or more wavelengths. The method further includes determining a measured peak wavelength of the multi-mode optical fiber based on the measured characteristic, determining a difference between the target peak wavelength and the measured peak wavelength, and modifying the process for manufacturing multi-mode optical fiber based on the difference between the target peak wavelength and the measured peak wavelength.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: July 25, 2023
    Assignee: Corning Incorporated
    Inventors: Jennifersue A. Bowker, Xin Chen, Jason Edward Hurley, Elios Klemo, Igor Rafaelyevich Mejouev, Daniel Aloysius Nolan, Dale Robert Powers
  • Patent number: 11667558
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 6, 2023
    Assignee: Corning Incorporated
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Patent number: 11577983
    Abstract: A method of forming an optical fiber preform includes the steps: igniting a burner having a fume tube assembly to produce a first spray size of silicon dioxide particles; depositing the silicon dioxide particles on a core cane to produce a soot blank; and adjusting an effective diameter of an aperture of the fume tube assembly to produce a second spray size of the silicon dioxide particles. The second spray size is larger than the first spray size.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: February 14, 2023
    Assignee: Corning Incorporated
    Inventors: James Henry Faler, Dale Robert Powers, Fei Xia, Chunfeng Zhou
  • Publication number: 20230001401
    Abstract: A particulate filter having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. Filtration material deposits are disposed on one or more of the wall surfaces of the honeycomb body. The highly porous deposits provide durable high clean filtration efficiency with small impact on pressure drop through the filter.
    Type: Application
    Filed: August 24, 2022
    Publication date: January 5, 2023
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Patent number: 11458464
    Abstract: A particulate filter having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. Filtration material deposits are disposed on one or more of the wall surfaces of the honeycomb body. The highly porous deposits provide durable high clean filtration efficiency with small impact on pressure drop through the filter.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: October 4, 2022
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20220119298
    Abstract: A method of producing soot, including: combusting a first fuel stream and a first oxidizer at a burner face; combusting a second fuel stream and a second oxidizer at the burner face, wherein the second fuel stream and the second oxidizer are premixed in advance of the burner face and a second equivalence ratio of the second fuel stream and the second oxidizer is less than about 1; and combusting a silicon-containing fuel into a plurality of soot particles, wherein the second fuel stream and the second oxidizer are combusted between the first fuel stream and the silicon-containing fuel. Applying this method of producing soot to deposit a preform suitable for the manufacture of optical fibers.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Inventors: Manoj Agrawal, Dale Robert Powers, Fei Xia
  • Publication number: 20220098085
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 31, 2022
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Publication number: 20220098084
    Abstract: A method of forming an optical fiber preform includes flowing a precursor stream through a burner toward a substrate, the precursor stream comprising a glass precursor gas and a carrier gas, the carrier gas having a kinematic viscosity at 2000 K of greater than 5 cm2/sec and a ratio of heat capacity to universal gas constant (Cp/R) 2000 K of less than 4; flowing an inflammable gas through the burner; pyrogenically forming glass particles from the glass precursor gas, the pyrogenically forming comprising combusting the inflammable gas; flowing a shield gas through the burner, the shield gas flowing between the precursor stream and the inflammable gas, the shield gas having a kinematic viscosity at 2000 K of greater than 5 cm2/sec and a ratio of heat capacity to universal gas constant (Cp/R) at 2000 K of less than 4; and depositing the glass particles onto the substrate.
    Type: Application
    Filed: May 18, 2021
    Publication date: March 31, 2022
    Inventors: Dale Robert Powers, Pushkar Tandon
  • Patent number: 11242277
    Abstract: A method of producing soot, including: combusting a first fuel stream and a first oxidizer at a burner face; combusting a second fuel stream and a second oxidizer at the burner face, wherein the second fuel stream and the second oxidizer are premixed in advance of the burner face and a second equivalence ratio of the second fuel stream and the second oxidizer is less than about 1; and combusting a silicon-containing fuel into a plurality of soot particles, wherein the second fuel stream and the second oxidizer are combusted between the first fuel stream and the silicon-containing fuel. Applying this method of producing soot to deposit a preform suitable for the manufacture of optical fibers.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 8, 2022
    Assignee: Corning Incorporated
    Inventors: Manoj Agrawal, Dale Robert Powers, Fei Xia
  • Publication number: 20210394168
    Abstract: A particulate filter having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. Filtration material deposits are disposed on one or more of the wall surfaces of the honeycomb body. The highly porous deposits provide durable high clean filtration efficiency with small impact on pressure drop through the filter.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 23, 2021
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20210354071
    Abstract: Filtration articles herein exhibit excellent filtration efficiency and pressure drop before and after water durability testing. The articles comprise: a honeycomb filter body; inorganic deposits disposed within the honeycomb filter body at a loading of less than or equal to 20 grams of the inorganic deposits per liter of the honeycomb filter body. The inorganic deposits are comprised of refractory inorganic nanoparticles bound by a high temperature binder comprising one or more inorganic components. At least a portion of the inorganic deposits form a porous inorganic network over portions of inlet walls of the honeycomb filter body.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 18, 2021
    Inventors: William Peter ADDIEGO, Xiaoran FANG, Thomas Jean GLASSON, Roychelle Sheneen INGRAM-OGUNWUMI, Mark Alan LEWIS, Cai LIU, Dale Robert POWERS, Todd Parrish ST CLAIR, Jianguo WANG, Huiqing WU, Xinfeng XING, Danhong ZHONG
  • Publication number: 20210347702
    Abstract: A method for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: atomizing particles of an inorganic material into liquid-particulate-binder droplets comprised of a liquid vehicle, a binder material, and the particles; evaporating substantially all of the liquid vehicle from the droplets to form agglomerates comprised of the particles and the binder material; depositing the agglomerates onto the porous walls of the plugged honeycomb body; wherein the agglomerates are disposed on, or in, or both on and in, the porous walls.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 11, 2021
    Inventors: Joseph Henry Citriniti, Christopher Lane Kerr, Stefan Wolfgang Kramel, Cai Liu, Shyam Prasad Mudiraj, Dale Robert Powers, Michael George Shultz, Jason Daniel Steadman, Huiqing Wu, Xinfeng Xing
  • Patent number: 11117124
    Abstract: A honeycomb body having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. A highly porous layer is disposed on one or more of the wall surfaces of the honeycomb body. The highly porous layer has a porosity greater than 90%, and has an average thickness of greater than or equal to 0.5 ?m and less than or equal to 10 ?m. A method of making a honeycomb body includes depositing a layer precursor on a ceramic honeycomb body and binding the layer precursor to the ceramic honeycomb body to form the highly porous layer.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 14, 2021
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20210205750
    Abstract: A honeycomb body (100) having a porous ceramic honeycomb structure with a first end (105), a second end (135), and a plurality of walls (115) having wall surfaces defining a plurality of inner channels (110). A porous material is disposed on one or more of the wall surfaces of the honeycomb body (100). A method for forming a honeycomb body (100) includes depositing a porous inorganic material on a ceramic honeycomb body (100) and binding the porous inorganic material to the ceramic honeycomb body (100) to form the porous layer.
    Type: Application
    Filed: September 3, 2018
    Publication date: July 8, 2021
    Inventors: Cai Liu, Dale Robert Powers, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20210197105
    Abstract: Methods for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: atomizing particles of an inorganic material into liquid-particulate-binder droplets comprised of an aqueous vehicle, a binder material, and the particles, evaporating substantially all of the aqueous vehicle from the droplets to form agglomerates comprised of the particles and the binder material, and depositing the agglomerates onto the porous walls of the plugged honeycomb body, wherein the agglomerates are disposed on, or in, or both on and in, the porous walls. Plugged honeycomb bodies comprising porous walls and inorganic material deposited thereon are also disclosed.
    Type: Application
    Filed: August 30, 2019
    Publication date: July 1, 2021
    Inventors: Yunfeng Gu, Mark Alan Lewis, Cai Liu, Dale Robert Powers, Todd Parrish St Clair, Jianguo Wang, Huiqing Wu, Xinfeng Xing, Danhong Zhong
  • Publication number: 20210179501
    Abstract: A method for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: mixing particles of an inorganic material with a liquid vehicle and a binder material to form a liquid-particulate-binder stream; mixing the liquid-particulate-binder stream with an atomizing gas, directing the liquid-particulate-binder stream into an atomizing nozzle thereby atomizing the particles into liquid-particulate-binder droplets comprised of the liquid vehicle, he binder material, and the particles; conveying the droplets toward the plugged honeycomb body by a gaseous carrier stream, wherein the gaseous carrier stream comprises a carrier gas and the atomizing gas; evaporating substantially all of the liquid vehicle from the droplets to form agglomerates comprised of the particles and the binder material; depositing the agglomerates onto the porous walls of the plugged honeycomb body; wherein the deposited agglomerates are disposed on, or in, or both on and in, the porous walls.
    Type: Application
    Filed: August 30, 2019
    Publication date: June 17, 2021
    Inventors: Mark Alan Lewis, Cai Liu, Dale Robert Powers, Todd Parrish St Clair, Jianguo Wang, Huiqing Wu, Fei Xia, Xinfeng Xing, Danhong Zhong