Patents by Inventor Dale Robert Powers

Dale Robert Powers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200148579
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Publication number: 20200062635
    Abstract: A method of producing soot, including: combusting a first fuel stream and a first oxidizer at a burner face; combusting a second fuel stream and a second oxidizer at the burner face, wherein the second fuel stream and the second oxidizer are premixed in advance of the burner face and a second equivalence ratio of the second fuel stream and the second oxidizer is less than about 1; and combusting a silicon-containing fuel into a plurality of soot particles, wherein the second fuel stream and the second oxidizer are combusted between the first fuel stream and the silicon-containing fuel. Applying this method of producing soot to deposit a preform suitable for the manufacture of optical fibers.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 27, 2020
    Inventors: Manoj Agrawal, Dale Robert Powers, Fei Xia
  • Patent number: 10562804
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 18, 2020
    Assignee: Corning Incorporated
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Patent number: 10429589
    Abstract: An optical fiber for efficient coupling of optical signals to photonic devices. The optical fiber includes a Cl doped tapered core region with a changing outer diameter and changing maximum core refractive index to provide improved coupling at wavelength of interest to photonic devices. The photonic devices may be, for example, silicon photonic devices with an operating wavelength at or near 1310 nm, or at or near 1550 nm.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 1, 2019
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Dale Robert Powers, Pushkar Tandon
  • Publication number: 20190256399
    Abstract: A process for manufacturing glass articles from powder at low temperatures includes the steps of preparing a slurry of powder suspended in a liquid; depositing the slurry on a substrate; drying the slurry to form a layer on the substrate; depositing slurry on the layer; drying the slurry deposited on the layer on the substrate to form another layer; repeating the steps of depositing a slurry and drying the to form a plurality of sequential layers on the substrate; and consolidating the plurality of sequential layers to form a glass article. The process requires a small manufacturing footprint, and facilitates the manufacture of very large near-net shape glass articles.
    Type: Application
    Filed: February 18, 2019
    Publication date: August 22, 2019
    Inventors: Sezhian Annamalai, Thomas Richard Chapman, Kenneth Edward Hrdina, Douglas Hull Jennings, Nicolas LeBlond, Dale Robert Powers
  • Publication number: 20190072714
    Abstract: Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Inventors: Douglas Llewellyn Butler, Matthew John Dejneka, Daniel Warren Hawtof, Dale Robert Powers, Pushkar Tandon
  • Patent number: 10185084
    Abstract: Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: January 22, 2019
    Assignee: Corning Incorporated
    Inventors: Douglas Llewellyn Butler, Matthew John Dejneka, Daniel Warren Hawtof, Dale Robert Powers, Pushkar Tandon
  • Publication number: 20190016624
    Abstract: Methods for modifying multi-mode optical fiber manufacturing processes are disclosed. In one embodiment, a method for modifying a process for manufacturing multi-mode optical fiber includes measuring at least one characteristic of a multi-mode optical fiber. The at least one characteristic is a modal bandwidth or a differential mode delay at one or more wavelengths. The method further includes determining a measured peak wavelength of the multi-mode optical fiber based on the measured characteristic, determining a difference between the target peak wavelength and the measured peak wavelength, and modifying the process for manufacturing multi-mode optical fiber based on the difference between the target peak wavelength and the measured peak wavelength.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 17, 2019
    Applicant: Corning Incorporated
    Inventors: Jennifersue A. Bowker, Xin Chen, Jason Edward Hurley, Elios Klemo, Igor Rafaelyevich Mejouev, Daniel Aloysius Nolan, Dale Robert Powers
  • Patent number: 10168246
    Abstract: Methods of selecting, from a set of like optical fibers, a subset of optical fibers that can meet both short-wavelength and target-wavelength bandwidth requirements are disclosed. The method includes obtaining short-wavelength bandwidth data from DMD measurements, and determining a peak wavelength for each optical fiber. A target-wavelength bandwidth is then calculated using the determined peak wavelengths. The calculated target bandwidth is then compared to the short-wavelength and target-wavelength bandwidth requirements to identify which of the optical fibers satisfy these requirements.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: January 1, 2019
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Xin Chen, Steven Craig Garner, Jr., Ming-Jun Li, Dale Robert Powers
  • Patent number: 10131566
    Abstract: Methods for modifying multi-mode optical fiber manufacturing processes are disclosed. In one embodiment, a method for modifying a process for manufacturing multi-mode optical fiber includes measuring at least one characteristic of a multi-mode optical fiber. The at least one characteristic is a modal bandwidth or a differential mode delay at one or more wavelengths. The method further includes determining a measured peak wavelength of the multi-mode optical fiber based on the measured characteristic, determining a difference between the target peak wavelength and the measured peak wavelength, and modifying the process for manufacturing multi-mode optical fiber based on the difference between the target peak wavelength and the measured peak wavelength.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: November 20, 2018
    Assignee: Corning Incorporated
    Inventors: Jennifersue A. Bowker, Xin Chen, Jason Edward Hurley, Elios Klemo, Igor Rafaelyevich Mejouev, Daniel Aloysius Nolan, Dale Robert Powers
  • Publication number: 20180265394
    Abstract: A method of forming an optical fiber preform includes the steps: igniting a burner having a fume tube assembly to produce a first spray size of silicon dioxide particles; depositing the silicon dioxide particles on a core cane to produce a soot blank; and adjusting an effective diameter of an aperture of the fume tube assembly to produce a second spray size of the silicon dioxide particles. The second spray size is larger than the first spray size.
    Type: Application
    Filed: March 8, 2018
    Publication date: September 20, 2018
    Inventors: James Henry Faler, Dale Robert Powers, Fei Xia, Chunfeng Zhou
  • Publication number: 20180224607
    Abstract: An optical fiber for efficient coupling of optical signals to photonic devices. The optical fiber includes a Cl doped tapered core region with a changing outer diameter and changing maximum core refractive index to provide improved coupling at wavelength of interest to photonic devices. The photonic devices may be, for example, silicon photonic devices with an operating wavelength at or near 1310 nm, or at or near 1550 nm.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 9, 2018
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Dale Robert Powers, Pushkar Tandon
  • Publication number: 20170267569
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 21, 2017
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Publication number: 20170240454
    Abstract: Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
    Type: Application
    Filed: February 23, 2016
    Publication date: August 24, 2017
    Inventors: Douglas Llewellyn Butler, Matthew John Dejneka, Daniel Warren Hawtof, Dale Robert Powers, Pushkar Tandon
  • Publication number: 20170146428
    Abstract: Methods of selecting, from a set of like optical fibers, a subset of optical fibers that can meet both short-wavelength and target-wavelength bandwidth requirements are disclosed. The method includes obtaining short-wavelength bandwidth data from DMD measurements, and determining a peak wavelength for each optical fiber. A target-wavelength bandwidth is then calculated using the determined peak wavelengths. The calculated target bandwidth is then compared to the short-wavelength and target-wavelength bandwidth requirements to identify which of the optical fibers satisfy these requirements.
    Type: Application
    Filed: October 20, 2016
    Publication date: May 25, 2017
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Xin Chen, Steven Craig Garner, JR., Ming-Jun Li, Dale Robert Powers
  • Patent number: 9643871
    Abstract: A submerged combustion melter and burner therefor. The burner may include a first tube having a scaled distal end and a second tube concentric to the first tube, the second tube having a partially sealed distal end with an opening for receiving the first tube, where an annular space is defined between the first and second tubes. The burner further includes a first gas port in the sealed distal end of the first tube, the first gas port supplying a first gas, a second gas port in a distal end of the second tube, the second gas port supplying a second gas to the annular space, and a nozzle on the proximate ends of the first and second tubes.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: May 9, 2017
    Assignee: Corning Incorporated
    Inventors: Curtis Richard Cowles, Dale Robert Powers
  • Publication number: 20160130168
    Abstract: A submerged combustion melter and burner therefor. The burner may include a first tube having a scaled distal end and a second tube concentric to the first tube, the second tube having a partially sealed distal end with an opening for receiving the first tube, where an annular space is defined between the first and second tubes. The burner further includes a first gas port in the sealed distal end of the first tube, the first gas port supplying a first gas, a second gas port in a distal end of the second tube, the second gas port supplying a second gas to the annular space, and a nozzle on the proximate ends of the first and second tubes.
    Type: Application
    Filed: June 11, 2014
    Publication date: May 12, 2016
    Inventors: Curtis Richard Cowles, Dale Robert Powers
  • Publication number: 20160060154
    Abstract: A burner for submerged combustion melting that mixes a first gas and a second gas inside the burner and emits the mixed gas through a nozzle for combustion below the surface of the material being melted. The burner includes a hollow tube and a static mixer inside the tube that mixes the first gas and the second gas as they travel through the tube. The mixed first and second gas exits a nozzle on a top end of the tube and is ignited to generate a flame below the surface of the material being melted, which may be a glass material.
    Type: Application
    Filed: February 26, 2014
    Publication date: March 3, 2016
    Inventors: Curtis Richard Cowles, Dale Robert Powers
  • Publication number: 20150291465
    Abstract: A swirling burner 100 for submerged combustion melting that swirls at least one of a first gas and a second gas exiting the burner. The burner includes a central tube for delivering the first gas a nozzle and an outer tube for delivering a second gas to the nozzle. Helical vanes or channels are provided in at least one of the central tube and the outer tube to cause a least one of the first gas and the second gas exiting the burner to swirl.
    Type: Application
    Filed: November 26, 2013
    Publication date: October 15, 2015
    Inventors: Curtis Richard Cowles, Dale Robert Powers
  • Publication number: 20150086161
    Abstract: An optical fiber link that utilizes concatenated primary and compensating multimode optical fibers is disclosed. The primary optical fiber has a first relative refractive index profile with a first alpha value ?40 of about 2.1 that provides for a minimum amount of intermodal dispersion of guided modes at a peak wavelength ?P40 in the range from 840 nm to 860 nm, and has a first bandwidth BW40 of 2 GHz·km or greater. The compensating optical fiber has a second relative refractive index profile with a second alpha value ?60, and wherein ?0.9?(?60??40)??0.1, and a peak wavelength ?P60 greater than 880 nm. The optical fiber link has improved bandwidth and data rates for first and second optical signals within first and second wavelength ranges, respectively.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 26, 2015
    Inventors: Scott Robertson Bickham, Xin Chen, Ming-Jun Li, Dale Robert Powers