Patents by Inventor Damian Alfonso Morero

Damian Alfonso Morero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10491304
    Abstract: A coherent receiver comprises an ingress signal path having an ingress line-side interface, and an ingress host-side interface. The ingress signal path is configured to receive an analog signal vector at the ingress line-side interface, to demodulate the analog signal vector, and to output a digital data signal Fat the ingress host-side interface. The coherent receiver also comprises clock and timing circuitry configured to receive a single reference clock signal and to provide a plurality of modified ingress path clock signals to different components of the ingress signal path, the plurality of modified ingress path clock signals derived from the single reference clock signal and the plurality of modified ingress path clock signals having different clock rates. The receiver, transmitter, or transceiver can operate in a plurality of programmable operating modes to accommodate different modulation/de-modulation schemes, error correction code schemes, framing/mapping protocols, or other programmable features.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: November 26, 2019
    Assignee: INPHI CORPORATION
    Inventors: Oscar Ernesto Agazzi, Diego Ernesto Crivelli, Paul Voois, Ramiro Rogelio Lopez, Jorge Manuel Finochietto, Norman L. Swenson, Mario Rafael Hueda, Hugo Santiago Carrer, Vadim Gutnik, Adrián Ulises Morales, Martin Ignacio Del Barco, Martin Carlos Asinari, Federico Nicolas Paredes, Alfredo Javier Taddei, Mauro Marcelo Bruni, Damian Alfonso Morero, Facundo Abel Alcides Ramos, Maria Laura Ferster, Elvio Adrian Serrano, Pablo Gustavo Quiroga, Roman Antonio Arenas, Matias German Schnidrig, Alejandro Javier Schwoykoski
  • Patent number: 10341030
    Abstract: A receiver architecture and method recovers data received over an optical fiber channel in the presence of cycle slips. In a first cycle slip recovery architecture, a receiver detects and corrects cycle slips based on pilot symbols inserted in the transmitted data. In a second cycle slip recovery architecture, a coarse cycle slip detection is performed based on pilot symbols and a cycle slip position estimation is then performed based on carrier phase noise. The receiver compensates for cycle slips based on the position estimation.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: July 2, 2019
    Assignee: INPHI CORPORATION
    Inventors: Mario Alejandro Castrillon, Damian Alfonso Morero, Mario Rafael Hueda
  • Publication number: 20190109646
    Abstract: A coherent receiver comprises an ingress signal path having an ingress line-side interface, and an ingress host-side interface. The ingress signal path is configured to receive an analog signal vector at the ingress line-side interface, to demodulate the analog signal vector, and to output a digital data signal Fat the ingress host-side interface. The coherent receiver also comprises clock and timing circuitry configured to receive a single reference clock signal and to provide a plurality of modified ingress path clock signals to different components of the ingress signal path, the plurality of modified ingress path clock signals derived from the single reference clock signal and the plurality of modified ingress path clock signals having different clock rates. The receiver, transmitter, or transceiver can operate in a plurality of programmable operating modes to accommodate different modulation/de-modulation schemes, error correction code schemes, framing/mapping protocols, or other programmable features.
    Type: Application
    Filed: November 29, 2018
    Publication date: April 11, 2019
    Inventors: Oscar Ernesto AGAZZI, Diego Ernesto CRIVELLI, Paul VOOIS, Ramiro Rogelio LOPEZ, Jorge Manuel FINOCHIETTO, Norman L. SWENSON, Mario Rafael HUEDA, Hugo Santiago CARRER, Vadim GUTNIK, Adrián Ulises MORALES, Martin Ignacio DEL BARCO, Martin Carlos ASINARI, Federico Nicolas PAREDES, Alfredo Javier TADDEI, Mauro Marcelo BRUNI, Damian Alfonso MORERO, Facundo Abel Alcides RAMOS, María Laura FERSTER, Elvio Adrian SERRANO, Pablo Gustavo QUIROGA, Roman Antonio ARENAS, Matias German SCHNIDRIG, Alejandro Javier SCHWOYKOSKI
  • Publication number: 20190036614
    Abstract: A method and structure for signal propagation in a coherent optical receiver device. Asynchronous equalization helps to reduce complexity and power dissipation, and also improves the robustness of timing recovery. However, conventional devices using inverse interpolation filters ignore adaptation algorithms. The present invention provides for forward propagation and backward propagation. In the forward case, the filter input signal is forward propagated through a filter to the adaptation engine, while, in the backward case, the error signal is backward propagated through a filter to the asynchronous domain. Using such forward and backward propagation schemes reduces implementation complexity while providing optical device performance.
    Type: Application
    Filed: October 3, 2018
    Publication date: January 31, 2019
    Inventors: Damián Alfonso MORERO, Mario Rafael HUEDA, Oscar Ernesto AGAZZI
  • Patent number: 10181899
    Abstract: Apparatus and method for transmitter alignment in an optical communication system are provided. In certain configurations, a method of correcting for transmitter skew is provided. The method includes generating an optical signal using a transmitter based on an in-phase (I) component and a quadrature-phase (Q) component of a transmit signal, the optical signal having a baud rate that is based on a timing tone. The method further includes receiving the optical signal as an input to a receiver, and generating a signal vector representing the optical signal using the receiver. The signal vector includes an I component and a Q component. The method further includes calculating a power of the timing tone based on processing the signal vector using a tone power calculator of the receiver, and correcting for a skew of the transmitter based on the calculated power.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: January 15, 2019
    Assignee: INPHI CORPORATION
    Inventors: Shu Hao Fan, Damian Alfonso Morero, Mario Rafael Hueda
  • Patent number: 10177851
    Abstract: A coherent receiver comprises an ingress signal path having an ingress line-side interface, and an ingress host-side interface. The ingress signal path is configured to receive an analog signal vector at the ingress line-side interface, to demodulate the analog signal vector, and to output a digital data signal Fat the ingress host-side interface. The coherent receiver also comprises clock and timing circuitry configured to receive a single reference clock signal and to provide a plurality of modified ingress path clock signals to different components of the ingress signal path, the plurality of modified ingress path clock signals derived from the single reference clock signal and the plurality of modified ingress path clock signals having different clock rates. The receiver, transmitter, or transceiver can operate in a plurality of programmable operating modes to accommodate different modulation/de-modulation schemes, error correction code schemes, framing/mapping protocols, or other programmable features.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: January 8, 2019
    Assignee: INPHI CORPORATION
    Inventors: Oscar Ernesto Agazzi, Diego Ernesto Crivelli, Paul Voois, Ramiro Rogelio Lopez, Jorge Manuel Finochietto, Norman L. Swenson, Mario Rafael Hueda, Hugo Santiago Carrer, Vadim Gutnik, Adrián Ulises Morales, Martin Ignacio Del Barco, Martin Carlos Asinari, Federico Nicolas Paredes, Alfredo Javier Taddei, Mauro Marcelo Bruni, Damian Alfonso Morero, Facundo Abel Alcides Ramos, María Laura Ferster, Elvio Adrian Serrano, Pablo Gustavo Quiroga, Roman Antonio Arenas, Matias German Schnidrig, Alejandro Javier Schwoykoski
  • Patent number: 10164715
    Abstract: An adaptive demapper adaptively demaps an input symbol. An input symbol is received and demapped in a hard-output demapper to generate a current detected symbol corresponding to a constellation point on a current constellation closest to the input symbol. A corrected inverse of a current noise power estimate is determined by updating a previous noise power estimate based on a difference between the input symbol and the current detected symbol. In a soft-output demapper, a log likelihood ratio corresponding to the current detected symbol is determined based on the corrected inverse of the current noise power estimate. The constellation point in the current constellation corresponding to the current detected symbol is then updated to generate an updated constellation based on a difference between the constellation point and the received input symbol.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: December 25, 2018
    Assignee: INPHI CORPORATION
    Inventors: Damian Alfonso Morero, Martin Carlos Asinari, Martin Ignacio Del Barco, Mario Rafael Hueda, Lucas Javier Yoaquino
  • Publication number: 20180351585
    Abstract: A decoder performs forward error correction based on quasi-cyclic regular column-partition low density parity check codes. A method for designing the parity check matrix reduces the number of short-cycles of the matrix to increase performance. An adaptive quantization post-processing technique further improves performance by eliminating error floors associated with the decoding. A parallel decoder architecture performs iterative decoding using a parallel pipelined architecture.
    Type: Application
    Filed: July 20, 2018
    Publication date: December 6, 2018
    Inventors: Damian Alfonso MORERO, Mario Alejandro CASTRILLON, Matias German SCHNIDRIG, Mario Rafael HUEDA
  • Publication number: 20180323871
    Abstract: Apparatus and method for transmitter alignment in an optical communication system are provided. In certain configurations, a method of correcting for transmitter skew is provided. The method includes generating an optical signal using a transmitter based on an in-phase (I) component and a quadrature-phase (Q) component of a transmit signal, the optical signal having a baud rate that is based on a timing tone. The method further includes receiving the optical signal as an input to a receiver, and generating a signal vector representing the optical signal using the receiver. The signal vector includes an I component and a Q component. The method further includes calculating a power of the timing tone based on processing the signal vector using a tone power calculator of the receiver, and correcting for a skew of the transmitter based on the calculated power.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Shu Hao FAN, Damian Alfonso MORERO, Mario Rafael HUEDA
  • Patent number: 10110317
    Abstract: Apparatus and method for compensating for transmitter errors in an optical communication system are provided. In certain configurations herein, a receiver is provided for processing an analog signal vector representing an optical signal received from a transmitter. The receiver includes an analog front-end that converts the analog signal vector into a digital signal vector including a digital representation of an I component and a Q component of the optical signal. The receiver further includes a digital signal processing circuit configured to process the digital signal vector to recover data, and the digital signal processing circuit includes a transmitter error compensation system that compensates the digital signal vector for at least one of a transmit skew error of the transmitter or a modulator biasing error of the transmitter.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: October 23, 2018
    Assignee: INPHI CORPORATION
    Inventors: Damian Alfonso Morero, Mario Rafael Hueda, Shu Hao Fan
  • Publication number: 20180302168
    Abstract: An adaptive demapper adaptively demaps an input symbol. An input symbol is received and demapped in a hard-output demapper to generate a current detected symbol corresponding to a constellation point on a current constellation closest to the input symbol. A corrected inverse of a current noise power estimate is determined by updating a previous noise power estimate based on a difference between the input symbol and the current detected symbol. In a soft-output demapper, a log likelihood ratio corresponding to the current detected symbol is determined based on the corrected inverse of the current noise power estimate. The constellation point in the current constellation corresponding to the current detected symbol is then updated to generate an updated constellation based on a difference between the constellation point and the received input symbol.
    Type: Application
    Filed: June 18, 2018
    Publication date: October 18, 2018
    Inventors: Damian Alfonso Morero, Martin Carlos Asinari, Martin Ignacio Del Barco, Mario Rafael Hueda, Lucas Javier Yoaquino
  • Patent number: 10103751
    Abstract: A decoder performs forward error correction based on quasi-cyclic regular column-partition low density parity check codes. A method for designing the parity check matrix reduces the number of short-cycles of the matrix to increase performance. An adaptive quantization post-processing technique further improves performance by eliminating error floors associated with the decoding. A parallel decoder architecture performs iterative decoding using a parallel pipelined architecture.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: October 16, 2018
    Assignee: INPHI CORPORATION
    Inventors: Damian Alfonso Morero, Mario Alejandro Castrillon, Matias German Schnidrig, Mario Rafael Hueda, Franco Paludi
  • Patent number: 10063262
    Abstract: A decoder performs forward error correction based on quasi-cyclic regular column-partition low density parity check codes. A method for designing the parity check matrix reduces the number of short-cycles of the matrix to increase performance. An adaptive quantization post-processing technique further improves performance by eliminating error floors associated with the decoding. A parallel decoder architecture performs iterative decoding using a parallel pipelined architecture.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: August 28, 2018
    Assignee: INPHI CORPORATION
    Inventors: Damian Alfonso Morero, Mario Alejandro Castrillon, Matias German Schnidrig, Mario Rafael Hueda
  • Patent number: 10038498
    Abstract: Apparatus and method for transmitter alignment in an optical communication system are provided. In certain configurations, a method of correcting for transmitter skew is provided. The method includes generating an optical signal using a transmitter based on an in-phase (I) component and a quadrature-phase (Q) component of a transmit signal, the optical signal having a baud rate that is based on a timing tone. The method further includes receiving the optical signal as an input to a receiver, and generating a signal vector representing the optical signal using the receiver. The signal vector includes an I component and a Q component. The method further includes calculating a power of the timing tone based on processing the signal vector using a tone power calculator of the receiver, and correcting for a skew of the transmitter based on the calculated power.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 31, 2018
    Assignee: INPHI CORPORATION
    Inventors: Shu Hao Fan, Damian Alfonso Morero, Mario Rafael Hueda
  • Patent number: 10027423
    Abstract: An adaptive demapper adaptively demaps an input symbol. An input symbol is received and demapped in a hard-output demapper to generate a current detected symbol corresponding to a constellation point on a current constellation closest to the input symbol. A corrected inverse of a current noise power estimate is determined by updating a previous noise power estimate based on a difference between the input symbol and the current detected symbol. In a soft-output demapper, a log likelihood ratio corresponding to the current detected symbol is determined based on the corrected inverse of the current noise power estimate. The constellation point in the current constellation corresponding to the current detected symbol is then updated to generate an updated constellation based on a difference between the constellation point and the received input symbol.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: July 17, 2018
    Assignee: INPHI CORPORATION
    Inventors: Damián Alfonso Morero, Martin Carlos Asinari, Martin Ignacio del Barco, Mario Rafael Hueda, Lucas Javier Yoaquino
  • Publication number: 20180026726
    Abstract: A receiver architecture and method recovers data received over an optical fiber channel in the presence of cycle slips. In a first cycle slip recovery architecture, a receiver detects and corrects cycle slips based on pilot symbols inserted in the transmitted data. In a second cycle slip recovery architecture, a coarse cycle slip detection is performed based on pilot symbols and a cycle slip position estimation is then performed based on carrier phase noise. The receiver compensates for cycle slips based on the position estimation.
    Type: Application
    Filed: September 25, 2017
    Publication date: January 25, 2018
    Inventors: Mario Alejandro CASTRILLON, Damian Alfonso MORERO, Mario Rafael HUEDA
  • Publication number: 20170317759
    Abstract: A coherent receiver comprises an ingress signal path having an ingress line-side interface, and an ingress host-side interface. The ingress signal path is configured to receive an analog signal vector at the ingress line-side interface, to demodulate the analog signal vector, and to output a digital data signal Fat the ingress host-side interface. The coherent receiver also comprises clock and timing circuitry configured to receive a single reference clock signal and to provide a plurality of modified ingress path clock signals to different components of the ingress signal path, the plurality of modified ingress path clock signals derived from the single reference clock signal and the plurality of modified ingress path clock signals having different clock rates. The receiver, transmitter, or transceiver can operate in a plurality of programmable operating modes to accommodate different modulation/de-modulation schemes, error correction code schemes, framing/mapping protocols, or other programmable features.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 2, 2017
    Inventors: Oscar Ernesto AGAZZI, Diego Ernesto CRIVELLI, Paul VOOIS, Ramiro Rogelio LOPEZ, Jorge Manuel FINOCHIETTO, Norman L. SWENSON, Mario Rafael HUEDA, Hugo Santiago CARRER, Vadim GUTNIK, Adrián Ulises MORALES, Martin Ignacio DEL BARCO, Martin Carlos ASINARI, Federico Nicolas PAREDES, Alfredo Javier TADDEI, Mauro Marcelo BRUNI, Damian Alfonso MORERO, Facundo Abel Alcides RAMOS, María Laura FERSTER, Elvio Adrian SERRANO, Pablo Gustavo QUIROGA, Roman Antonio ARENAS, Matias German SCHNIDRIG, Alejandro Javier SCHWOYKOSKI
  • Patent number: 9806823
    Abstract: A receiver architecture and method recovers data received over an optical fiber channel in the presence of cycle slips. In a first cycle slip recovery architecture, a receiver detects and corrects cycle slips based on pilot symbols inserted in the transmitted data. In a second cycle slip recovery architecture, a coarse cycle slip detection is performed based on pilot symbols and a cycle slip position estimation is then performed based on carrier phase noise. The receiver compensates for cycle slips based on the position estimation.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: October 31, 2017
    Assignee: INPHI CORPORATION
    Inventors: Mario Alejandro Castrillon, Damian Alfonso Morero, Mario Rafael Hueda
  • Patent number: 9735881
    Abstract: A coherent receiver comprises an ingress signal path having an ingress line-side interface, and an ingress host-side interface. The ingress signal path is configured to receive an analog signal vector at the ingress line-side interface, to demodulate the analog signal vector, and to output a digital data signal at the ingress host-side interface. The coherent receiver also comprises clock and timing circuitry configured to receive a single reference clock signal and to provide a plurality of modified ingress path clock signals to different components of the ingress signal path, the plurality of modified ingress path clock signals derived from the single reference clock signal and the plurality of modified ingress path clock signals having different clock rates. The receiver, transmitter, or transceiver can operate in a plurality of programmable operating modes to accommodate different modulation/de-modulation schemes, error correction code schemes, framing/mapping protocols, or other programmable features.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 15, 2017
    Assignee: INPHI CORPORATION
    Inventors: Oscar Ernesto Agazzi, Diego Ernesto Crivelli, Paul Voois, Ramiro Rogelio Lopez, Jorge Manuel Finochietto, Norman L. Swenson, Mario Rafael Hueda, Hugo Santiago Carrer, Vadim Gutnik, Adrián Ulises Morales, Martin Ignacio del Barco, Martin Carlos Asinari, Federico Nicolas Paredes, Alfredo Javier Taddei, Mauro M. Bruni, Damian Alfonso Morero, Facundo Abel Alcides Ramos, María Laura Ferster, Elvio Adrian Serrano, Pablo Gustavo Quiroga, Roman Antonio Arenas, Matias German Schnidrig, Alejandro Javier Schwoykoski
  • Publication number: 20170126328
    Abstract: A receiver architecture and method recovers data received over an optical fiber channel in the presence of cycle slips. In a first cycle slip recovery architecture, a receiver detects and corrects cycle slips based on pilot symbols inserted in the transmitted data. In a second cycle slip recovery architecture, a coarse cycle slip detection is performed based on pilot symbols and a cycle slip position estimation is then performed based on carrier phase noise. The receiver compensates for cycle slips based on the position estimation.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 4, 2017
    Inventors: Mario Alejandro Castrillon, Damian Alfonso Morero, Mario Rafael Hueda