Patents by Inventor Dan E. Andersen

Dan E. Andersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250099157
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Application
    Filed: December 10, 2024
    Publication date: March 27, 2025
    Applicant: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. WILTBERGER, Phillip GOODING, Dan E. ANDERSEN
  • Patent number: 12207859
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Grant
    Filed: June 19, 2024
    Date of Patent: January 28, 2025
    Assignee: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. Wiltberger, Phillip Gooding, Dan E. Andersen
  • Publication number: 20250017777
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Application
    Filed: September 27, 2024
    Publication date: January 16, 2025
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20240335224
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Application
    Filed: June 19, 2024
    Publication date: October 10, 2024
    Applicant: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. WILTBERGER, Phillip GOODING, Dan E. ANDERSEN
  • Patent number: 12102565
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: October 1, 2024
    Assignee: AMO Development, LLC
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 12053220
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Grant
    Filed: December 20, 2023
    Date of Patent: August 6, 2024
    Assignee: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. Wiltberger, Phillip Gooding, Dan E. Andersen
  • Publication number: 20240238031
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Application
    Filed: December 20, 2023
    Publication date: July 18, 2024
    Applicant: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. WILTBERGER, Phillip GOODING, Dan E. ANDERSEN
  • Patent number: 11998486
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: June 4, 2024
    Assignee: AMO Development, LLC
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 11896283
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: February 13, 2024
    Assignee: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. Wiltberger, Phillip Gooding, Dan E. Andersen
  • Publication number: 20230074204
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Application
    Filed: September 26, 2022
    Publication date: March 9, 2023
    Applicant: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. WILTBERGER, Phillip GOODING, Dan E. ANDERSEN
  • Patent number: 11554043
    Abstract: Methods and systems for performing laser-assisted surgery on an eye form one or more small anchoring capsulotomies in the lens capsule of the eye. The one or more anchoring capsulotomies are configured to accommodate corresponding anchoring features of an intraocular lens and/or to accommodate one or more drug-eluting members. A method for performing laser-assisted eye surgery on an eye having a lens capsule includes forming an anchoring capsulotomy in the lens capsule and coupling an anchoring feature of the intraocular lens with the anchoring capsulotomy. The anchoring capsulotomy is formed by using a laser to incise the lens capsule. The anchoring feature can protrude transverse to a surface of the intraocular lens that interfaces with the lens capsule adjacent to the anchoring capsulotomy.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: January 17, 2023
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Julian Stevens, Dan E. Andersen
  • Patent number: 11490948
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: November 8, 2022
    Assignee: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. Wiltberger, Phillip Gooding, Dan E. Andersen
  • Publication number: 20220304854
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 11406263
    Abstract: A photomedical system and method for treating and/or diagnosing a patient's eye that includes a first light source for producing light, a scanning device for deflecting the light to produce a pattern of the light on the eye, a viewing element positioned to view the eye by a user or physician, and an alignment element aligned to the viewing element and the scanning device for optically indicating through the viewing element a location on the eye on which the pattern of the light will be located, but without projecting any alignment light onto the eye.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: August 9, 2022
    Assignee: IRIDEX Corporation
    Inventors: Michael W. Wiltberger, Dan E. Andersen, David H. Mordaunt
  • Patent number: 11364147
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 21, 2022
    Assignee: AMO Development, LLC
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20220054308
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 11143828
    Abstract: An optical switch incorporated in a photomedical system, and a method of treating tissue using the optical switch for creating pulsed light. A light source generates an optical beam. An aperture element includes a light-transmitting portion and a light-blocking portion. An optical element such as a mirror, prism or lens directs the optical beam to the aperture element, wherein the optical element is movable for translating the optical beam across the light-transmitting and light-blocking portions of the aperture element, or changing its angle of incidence through the aperture to produce one or more pulses of light from the optical beam. A lens focuses the one or more pulses of the optical beam onto target tissue. A controller controls the movement of the optical element to produce the one or more pulses of light.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: October 12, 2021
    Assignee: IRIDEX Corporation
    Inventors: Michael W. Wiltberger, Dan E. Andersen, David H. Mordaunt
  • Publication number: 20210307806
    Abstract: An elongate electrode is configured to flex and generate plasma to incise tissue. An electrical energy source operatively coupled to the electrode is configured to provide electrical energy to the electrode to generate the plasma. A tensioning element is operatively coupled to the elongate electrode. The tensioning element can be configured to provide tension to the elongate electrode to allow the elongate electrode to flex in response to the elongate electrode engaging the tissue and generating the plasma. The tensioning element operatively coupled to the flexible elongate electrode may allow for the use of a small diameter electrode, such as a 5 ?m to 20 ?m diameter electrode, which can allow narrow incisions to be formed with decreased tissue damage. In some embodiments, the tensioning of the electrode allows the electrode to more accurately incise tissue by decreasing variations in the position of the electrode along the incision path.
    Type: Application
    Filed: November 6, 2020
    Publication date: October 7, 2021
    Applicant: INSIGHTFUL INSTRUMENTS, INC.
    Inventors: Michael W. WILTBERGER, Phillip GOODING, Dan E. ANDERSEN
  • Patent number: 11026860
    Abstract: Optical scanning system and method for performing therapy on trabecular meshwork of a patient's eye, including a light source for producing alignment and therapeutic light, a scanning device for deflecting the alignment and therapeutic light to produce an alignment therapeutic patterns of the alignment and therapeutic light, and an ophthalmic lens assembly for placement over a patient's eye that includes a reflective optical element for reflecting the light patterns onto the trabecular meshwork of the patient's eye. The reflective optical element can be a continuous annular mirror (e.g. smooth or with multiple facets) to image the entire trabecular meshwork, or a reflective optical element that moves in coordination with the deflection of the beam. Visualization of the alignment and therapeutic patterns of light on the eye can be implemented by reflection thereof off a visualization mirror that transmits a portion of light emanating from the trabecular meshwork.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: June 8, 2021
    Assignee: IRIDEX
    Inventors: Dan E. Andersen, David H. Mordaunt, Michael W. Wiltberger
  • Publication number: 20210128354
    Abstract: Methods and systems for performing laser-assisted surgery on an eye form one or more small anchoring capsulotomies in the lens capsule of the eye. The one or more anchoring capsulotomies are configured to accommodate corresponding anchoring features of an intraocular lens and/or to accommodate one or more drug-eluting members. A method for performing laser-assisted eye surgery on an eye having a lens capsule includes forming an anchoring capsulotomy in the lens capsule and coupling an anchoring feature of the intraocular lens with the anchoring capsulotomy. The anchoring capsulotomy is formed by using a laser to incise the lens capsule. The anchoring feature can protrude transverse to a surface of the intraocular lens that interfaces with the lens capsule adjacent to the anchoring capsulotomy.
    Type: Application
    Filed: January 8, 2021
    Publication date: May 6, 2021
    Inventors: Georg Schuele, Julian Stevens, Dan E. Andersen