Patents by Inventor Dan Hancu

Dan Hancu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120087838
    Abstract: A catalyst system includes a first catalytic composition and a second catalytic composition. The first catalytic composition includes a homogeneous solid mixture, which includes a first catalytic material disposed on a first substrate. The pores of the solid mixture have an average diameter of greater than about 45 nanometers. The second catalytic composition includes at least one of a zeolite or a second catalytic material disposed on a second substrate. The second catalytic material includes an element selected from the group that includes tungsten, titanium, and vanadium.
    Type: Application
    Filed: October 6, 2010
    Publication date: April 12, 2012
    Applicant: General Electric Company
    Inventors: Benjamin Hale Winkler, Dan Hancu, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Publication number: 20120082606
    Abstract: According to various embodiments, a catalyst composition includes a catalytic metal secured to a porous substrate. The substrate has pores that are templated. The substrate is a product of adding a substrate precursor to a water-in-oil microemulsion including a catalytic metal salt, a solvent, a templating agent, and water.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 5, 2012
    Applicant: General Electric Company
    Inventors: Larry Neil Lewis, Robert Edgar Colbum, Ashish Balkrishna Mhadeshwar, Dan Hancu
  • Publication number: 20120082605
    Abstract: An exhaust treatment method is provided. Method of increasing activation of NOx reduction catalyst using two or more reductant is discussed. The NOx catalyst is disposed to receive both the exhaust stream and reductant stream. The sensor is disposed to sense a system parameter related to carbon loading of the catalyst and produce a signal corresponding to the system parameter. The controller is disposed to receive the signal and to control dosing of the reductant stream based at least in part on the signal. The method includes sensing a system parameter related to carbon loading of a catalyst, producing a signal corresponding to the system parameter and sending the signal to a controller; and controlling a dosing of a reductant stream based at least in part on the signal.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 5, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel George Norton, Benjamin Hale Winkler, Ashish Balkrishna Mhadeshwar, Dan Hancu, Stanlee Teresa Buddle
  • Publication number: 20120047877
    Abstract: An exhaust treatment system is provided. Method of increasing activation of NOx reduction catalyst using two or more reductant is discussed. The exhaust treatment system includes an exhaust source, a reductant source, a nitrogen oxide (NOx) reduction catalyst, a sensor, and a controller. The reductant source includes a first reductant and second reductant, and is disposed to inject a reductant stream into an exhaust stream from the exhaust source. The NOx catalyst is disposed to receive both the exhaust stream and reductant stream. The sensor is disposed to sense a system parameter related to carbon loading of the catalyst and produce a signal corresponding to the system parameter. The controller is disposed to receive the signal and to control dosing of the reductant stream based at least in part on the signal.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Benjamin Hale Winkler, Daniel George Norton, Ashish Balkrishna Mhadeshwar, Dan Hancu, Stanlee Teresa Buddle
  • Publication number: 20120019126
    Abstract: An oxynitride phosphor is presented. The oxynitride phosphor has a formula: ApBqOrNs: R such that A is barium or a combination of barium with at least one of Li, Na, K, Y, Sc, Be, Mg, Ca, Sr, Ba, Zn, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu; B is silicon or a combination of silicon with at least one of Al, B, Ga, and Ge; R is europium or a combination of europium with at least one of Ce, Pr, Sm, Nd, Tb, Dy, Yb, Tm, Er, Ho, and Mn. p, q, r, s are numbers such that p is greater than about 2 and less than about 6, q is greater than about 8 and less than about 10, r is greater than about 0.1 and less than about 6, and s is greater than about 10 and less than about 15. The method of preparing the oxynitride phosphors and light emitting apparatus including the oxynitride phosphors are included.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 26, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Digamber Gurudas Porob, Anant Achyut Setlur, Prasanth Kumar Nammalwar, Shyamala Halady Subraya Bhat, Satya Kishore Manepalli, Dan Hancu
  • Patent number: 8101145
    Abstract: An exhaust treatment system is provided. Method of increasing activation of NOx reduction catalyst using two or more reductant is discussed. The exhaust treatment system includes an exhaust source, a reductant source, a nitrogen oxide (NOx) reduction catalyst, a sensor, and a controller. The reductant source includes a first reductant and second reductant, and is disposed to inject a reductant stream into an exhaust stream from the exhaust source. The NOx catalyst is disposed to receive both the exhaust stream and reductant stream. The sensor is disposed to sense a system parameter related to carbon loading of the catalyst and produce a signal corresponding to the system parameter. The controller is disposed to receive the signal and to control dosing of the reductant stream based at least in part on the signal.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: January 24, 2012
    Assignee: General Electric Company
    Inventors: Daniel George Norton, Benjamin Hale Winkler, Ashish Balkrishna Mhadeshwar, Dan Hancu, Stanlee Teresa Buddle
  • Patent number: 8062991
    Abstract: A catalyst system for the reduction of NOx comprises a catalyst comprising a metal oxide catalyst support, a catalytic metal oxide comprising at least one of gallium oxide or silver oxide, and at least one promoting metal selected from the group consisting of silver, cobalt, molybdenum, tungsten, indium, bismuth and mixtures thereof. The catalyst system further comprises a gas stream comprising an organic reductant, and a compound comprising sulfur. A method for reducing NOx utilizing the said catalyst system is also provided.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: November 22, 2011
    Assignee: General Electric Company
    Inventors: Jonathan Lloyd Male, Grigorii Lev Soloveichik, Alison Liana Palmatier, Dan Hancu, Gregory Lee Warner, Jennifer Kathleen Redline, Eric George Budesheim, Teresa Grocela Rocha, Stanlee Teresa Buddle
  • Patent number: 8056322
    Abstract: A system is provided for supplying reductants to an emission treatment unit. The system comprises a fuel tank adapted to directly or indirectly supply a first premixed fuel stream and a second premixed fuel stream, wherein each fuel stream comprises a primary fuel component and an oxygenate reductant component. An engine is in fluid communication with the fuel tank, wherein the engine is configured to receive the first premixed fuel stream and create an exhaust stream. The system further includes an emission treatment unit to treat the exhaust stream. A separation unit is configured to receive the second premixed fuel stream, separate the second premixed fuel stream into a first fraction stream and a second fraction stream, and supply the first fraction stream to the emission treatment unit, wherein the first fraction stream comprises a higher concentration of the oxygenate reductant component than the second fraction stream.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: November 15, 2011
    Assignee: General Electric Company
    Inventors: Benjamin Hale Winkler, Dan Hancu, Frederic Vitse, Norberto Silvi, Hua Wang, Ke Liu
  • Publication number: 20110239622
    Abstract: An emission treatment system is provided. The emission treatment system comprises a separation system and a selective catalytic reduction (SCR) catalyst. The separation system comprises a separator, a fuel inlet disposed to supply fuel to the separator, a first fuel outlet and a second fuel outlet respectively disposed to carry away fuel from the separator. The SCR catalyst comprises a catalyst composition comprising silver and templated metal oxide substrate. The emission treatment system is designed such that the separation system is configured to be in fluid communication with the SCR catalyst through the first fuel outlet during operation. A system including the emission treatment system and a combustion engine is also provided. Method of increasing NOx reduction efficiency of the SCR catalyst using fuel fraction is discussed.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Dan Hancu, Benjamin Hale Winkler, Daniel George Norton, Larry Neil Lewis
  • Publication number: 20110209459
    Abstract: A catalyst composition is provided that includes a catalytic metal secured to a substrate, and the substrate is mesoporous and has pores that are templated. A catalyst composition includes a catalytic metal secured to a mesoporous substrate. The mesoporous substrate is a reaction product of a reactive solution, a solvent, a modifier, and a templating agent. A method for controlling nitrous oxide emissions including the catalyst composition comprising introducing a regeneration fuel into an exhaust stream upstream relative to the catalyst composition and heating the exhaust stream upstream relative to the catalyst composition. When the regeneration fuel is introduced the air ? of an air/fuel mixture of a lean burn exhaust does not exceed 1.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Inventors: Dan Hancu, Larry Neil Lewis, Benjamin Hale Winkler, Daniel George Norton
  • Publication number: 20110209466
    Abstract: A catalyst composition, a catalytic reduction system including the catalyst composition and a system using the catalytic reduction system are provided. The catalyst composition includes a templated metal oxide substrate and a catalyst material. The templated metal oxide substrate comprises yttrium and has a plurality of pores. Yttrium is present in an amount from about 0.05 mol percent to about 3 mol percent of the substrate. The catalyst material includes a catalyst metal disposed on the templated metal oxide substrate.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ming Yin, Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Stephanie L. Knoeller
  • Patent number: 7987663
    Abstract: A method is provided for operating a diesel engine with reduced emissions. The method comprises combusting a first biodiesel blend fuel in a diesel engine resulting in the production of diesel exhaust gases containing NOx. The diesel exhaust gases are admixed with a second biodiesel blend fuel, and the second biodiesel blend fuel is hydrolyzed to form reducing agents. The diesel exhaust gases containing NOx are passed through an NOx-reducing catalyst to reduce the NOx through a selective catalytic reduction reaction with the reducing agents. The invention further provides a method for operating a diesel engine with reduced emissions, comprising combusting a first biodiesel blend fuel in a diesel engine resulting in the production of diesel exhaust gases containing NOx. A second biodiesel blend fuel is converted in a fuel processor thereby forming reducing agents, and the diesel exhaust gases are admixed with the reducing agents.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: August 2, 2011
    Assignee: General Electric Company
    Inventors: Dan Hancu, Benjamin Hale Winkler, Gregg Anthony Deluga, Daniel George Norton, Frederic Vitse
  • Publication number: 20110166015
    Abstract: The present invention details a process for producing a catalyst powder. The steps of the process include preparing catalyst slurry, drying, pyrolyzing, and calcining the catalyst slurry to obtain a calcined catalyst powder. The catalyst slurry comprises a catalyst, a liquid carrier, a templating agent, and a catalyst substrate. The catalyst slurry is dried to obtain a raw catalyst powder. The raw catalyst powder is heated in a first controlled atmosphere to obtain a pyrolyzed catalyst powder and the pyrolyzed catalyst powder is calcined in a second controlled atmosphere to obtain a calcined catalyst powder. A method of fabricating a catalyst surface and catalytic converter using the prepared catalyst powder is also illustrated.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 7, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel George Norton, Larry Neil Lewis, Elliott West Shanklin, Frederic Joseph Klug, Venkat Subramaniam Venkataramani, Robert Joseph Lyons, Dan Hancu, Benjamin Hale Winkler, Hrishikesh Keshavan
  • Publication number: 20110152068
    Abstract: A method for coating a support with a catalyst powder is provided. The method includes preparing a slurry by mixing a catalyst precursor, substrate precusor, a templating agent and a surfactant, spray drying the slurry into a powder and calcing the powder to produce a treated powder. Another slurry is created using the treated powder and a liquid medium, such as isopropyl alcohol, to form a washcoat. The washcoat is applied to a support, dried and repeated until a desired amount of powder is applied to the support. The support is then calcined.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hrishikesh Keshavan, Dan Hancu, Benjamin Hale Winkler
  • Publication number: 20110152064
    Abstract: A method for coating a support with a catalyst powder is provided. The method includes preparing a slurry by mixing a catalyst precursor, substrate precursor, a templating agent and a surfactant, spray drying the slurry into a powder and calcing the powder to produce a treated powder. Another slurry is created using the treated powder and a liquid medium, such as isopropyl alcohol. A second catalytic material is added to this slurry to form a washcoat. The washcoat is applied to a support, dried and repeated until a desired amount of powder is applied to the support. The support is then calcined.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hrishikesh Keshavan, Dan Hancu, Benjamin Hale Winkler
  • Publication number: 20110120100
    Abstract: A catalyst system comprising a first catalytic composition comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support. The pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers. The catalytic metal comprises nanocrystals.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ming Yin, Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Benjamin Hale Winkler, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Publication number: 20110047988
    Abstract: A catalyst system comprising a first catalytic composition comprising a first catalytic material disposed on a metal inorganic support; wherein the metal inorganic support has pores; and at least one promoting metal. The catalyst system further comprises a second catalytic composition comprising, (i) a zeolite, or (ii) a first catalytic material disposed on a first substrate, the first catalytic material comprising an element selected from the group consisting of tungsten, titanium, and vanadium. The catalyst system may further comprise a third catalytic composition. The catalyst system may further comprise a delivery system configured to deliver a reductant and optionally a co-reductant. A catalyst system comprising a first catalytic composition, the second catalytic composition, and the third catalytic composition is also provided. An exhaust system comprising the catalyst systems described herein is also provided.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Larry Neil Lewis, Benjamin Hale Winkler, Dan Hancu, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Publication number: 20110047995
    Abstract: A catalyst system comprising a first catalytic composition comprising, (i) a first component comprising a zeolite, and (ii) a second component comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic network; wherein the pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers; wherein the first component and the second component form an intimate mixture. The catalyst system may further comprise a second catalytic composition and a third catalytic composition. The catalyst system may further comprise a delivery system configured to deliver a reductant and optionally a co-reductant. An exhaust system comprising the catalyst systems described herein is also provided.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Larry Neil Lewis, Donald Wayne Whisenhunt, Jr., Dan Hancu, Ashish Balkrishna Mhadeshwar, Benjamin Hale Winkler, Daniel George Norton, Oltea Puica Siclovan
  • Patent number: 7863209
    Abstract: A method for recovering and reusing a ring-halogenation catalyst comprises: (A) contacting an aromatic compound with chlorine or bromine in the presence of a catalyst composition, where the catalyst composition comprises at least one salt comprising a Group 4-13 metal, a lanthanide metal, or an actinide metal; and at least one organic counterion derived from an organic acid having a pKa relative to water of 0 or greater; and at least one organic sulfur compound; to form a first product mixture comprising a monochloro or a monobromo aromatic compound and a Group 4-13 metal halide, a lanthanide metal halide or an actinide metal halide; (B) separating the metal halide from the first product mixture; and (C) contacting at least a portion of the metal halide and an aromatic compound with chlorine or bromine, and at least one organic sulfur compound; to form a second product mixture comprising a monochloro or a monobromo aromatic compound and a Group 4-13 metal halide, a lanthanide metal halide or an actinide metal
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: January 4, 2011
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Balakrishnan Ganesan, Pradeep Jeevaji Nadkarni, Robert Edgar Colborn, Dan Hancu
  • Publication number: 20100233053
    Abstract: A method is provided. The method comprises reacting a reactive solution and a templating agent to form a gel; and calcining the gel to form a catalyst composition comprising homogeneous solid mixture. The homogenous solid mixture contains (i) at least one catalytic metal and (ii) at least one metal inorganic network. The templating agent comprises an octylphenol ethoxylate having a structure [I]: wherein ā€œnā€ is an integer having a value of about 8 to 20. A catalyst composition prepared using the templating agent having a structure [1] is also provided.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 16, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Ashish Balkrishna Mhadeshwar, Ming Yin