Patents by Inventor Dana Craig Bookbinder

Dana Craig Bookbinder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210032160
    Abstract: An optical fiber draw system and method of coating an optical fiber. The system includes a furnace for heating an optical fiber preform, a draw assembly for drawing the optical fiber at a draw speed greater than 50 meters per second, a first coating applicator for applying a first coating onto the fiber, and a first curing assembly comprising a first plurality of light sources comprising light-emitting diodes for partially curing the first coating. The optical fiber draw system also includes a second coating applicator for applying a second coating onto the fiber on top of the first coating, and a second curing system comprising a second plurality of light sources for curing the second coating, wherein the first coating is further cured in the range of 15-50 percent after leaving the first curing assembly.
    Type: Application
    Filed: July 16, 2020
    Publication date: February 4, 2021
    Inventors: Dana Craig Bookbinder, Pushkar Tandon, Ruchi Tandon
  • Publication number: 20200369563
    Abstract: The systems and methods of forming optical fiber coatings with reduced defects include moving a bare optical fiber through first and second coating sub-systems. The first coating sub-system forms a first coating on the bare optical fiber by depositing a first coating material and then curing the deposited first coating material with actinic light. This process also results in the formation of stray actinic light. The process also includes moving the coated optical fiber through a second coating sub-system to form a second coating on the first coating. A light-blocking device resides between the first and second coating sub-systems to block the stray actinic light. Without the light-blocking device, the stray actinic light can enter the second coating sub-system and reach the second coating material therein and form a gel therefrom, which in turn leads to defects in the coated optical fiber exiting the second coating sub-system.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 26, 2020
    Inventors: Benjamin David Bayless, Dana Craig Bookbinder, Stephan Lvovich Logunov, Darren Andrew Stainer, Ruchi Tandon
  • Publication number: 20200353401
    Abstract: A honeycomb body having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. A highly porous layer is disposed on one or more of the wall surfaces of the honeycomb body. The highly porous layer has a porosity greater than 90%, and has an average thickness of greater than or equal to 0.5 ?m and less than or equal to 10 ?m. A method of making a honeycomb body includes depositing a layer precursor on a ceramic honeycomb body and binding the layer precursor to the ceramic honeycomb body to form the highly porous layer.
    Type: Application
    Filed: October 31, 2018
    Publication date: November 12, 2020
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20200339469
    Abstract: Embodiments of the present disclosure are directed to coated glass articles which reduce glass particle formation caused by glass to glass contact in pharmaceutical glass filling lines.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicant: CORNING INCORPORATED
    Inventors: John Frederick Bayne, Dana Craig Bookbinder, Theresa Chang, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Kyle Christopher Hoff, Jamie Lynne Morley, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Christopher Lee Timmons
  • Patent number: 10787292
    Abstract: Disclosed herein are delamination resistant glass pharmaceutical containers which may include an aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to ISO 720-1985 testing standard. The glass containers may also have a compressive stress layer with a depth of layer of greater than 25 ?m. A surface compressive stress of the glass containers may be greater than or equal to 350 MPa. The delamination resistant glass pharmaceutical containers may be ion exchange strengthened and the ion exchange strengthening may include treating the delamination resistant glass pharmaceutical container in a molten salt bath for a time less than or equal to 5 hours at a temperature less than or equal to 450° C.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: September 29, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Kaveh Adib, Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Andrei Gennadyevich Fadeev, James Patrick Hamilton, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Robert Anthony Schaut, Susan Lee Schiefelbein, Christopher Lee Timmons
  • Patent number: 10775558
    Abstract: A single mode optical fiber includes: (i) a silica based core having a refractive index profile with an alpha (?) between 1.8 and 200, a relative refractive index ?1max %, and an outer radius r1, wherein 7 microns>r1?4.5 microns, the core further comprising silica doped with chlorine, wherein the maximum chlorine concentration in the core is greater than 0.5 wt %; and wherein 1.40<X<1.7 where X=[(2?n1(2?1max % r12)1/2/Vc)+(0.0028*Vm)], n1 is maximum refractive index of the core, Vm is moat volume, and Vc is a function of core alpha (?) and (ii) an outer cladding region surrounding the first cladding region, the outer cladding region having a relative refractive index ?4% such that ?1max>?4%.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 15, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Publication number: 20200284976
    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 ?m or less, while providing a mode field diameter of 9.0 ?m or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 ?m or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
    Type: Application
    Filed: April 3, 2020
    Publication date: September 10, 2020
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Inna Igorevna Kouzmina, Ming-Jun Li, Manuela Ocampo, Pushkar Tandon
  • Patent number: 10768384
    Abstract: A highly packed, low bend loss optical cable is provided. The cable includes an outer cable jacket and a plurality of buffer tubes surrounded by the cable jacket. Each buffer tube includes an inner surface defining a channel having a diameter, D1, and an outer surface facing an inner surface of the cable jacket. The cable includes a plural number, N, of optical fibers, located within the channel of each buffer tube and surrounded by the inner surface of the buffer tube. Each optical fiber has an outer diameter, D2. The N optical fibers are densely packed within each buffer tube such that a diameter ratio parameter, ?, is defined as the ratio D1/D2, and is 2.25+0.143(N)???1.14+0.313(N).
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: September 8, 2020
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Dana Craig Bookbinder, Inna Igorevna Kouzmina, Ming-Jun Li, David Alan Seddon, Pushkar Tandon
  • Publication number: 20200268608
    Abstract: According to embodiments, a method of making a coated pharmaceutical container, may include: forming a glass tube; forming the glass tube into a pharmaceutical container comprising an interior surface and an exterior surface; and applying a coating to the exterior surface. The coating may have a coefficient of friction less than or equal to 0.7 relative to a second pharmaceutical container when tested in a vial-on-vial testing jig under a normal load of 30 N. The coated pharmaceutical container may be thermally stable after depyrogenation at a temperature of at least 260° C. for 30 minutes in air.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Applicant: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 10752542
    Abstract: A glass article having an asymmetric stress profile exhibiting a high degree of asymmetry and a low degree or no warp. The glass article has a stress profile with a high Asymmetry Figure of Merit and a high Warpage Figure of Merit.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: August 25, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Timothy Michael Gross, Jennifer Lynn Hunt, Rostislav Vatchev Roussev
  • Patent number: 10737975
    Abstract: A strengthened antimicrobial glass including greater from about 50.0 mol. % to about 65.0 mol. % SiO2, about 14.0 mol. % to about 22.0 mol. % Al2O3, about 14.0 mol. % to about 22.0 mol. % R2O, wherein R is an alkali metal, and about 4.0 mol. % to 10.0 mol. % P2O5. The glass may have a compressive stress layer having a thickness of greater than or equal to about 20 ?m less than or equal to about 60 ?m and having a compressive stress of greater than or equal to about 700 MPa. The glass may have an antimicrobial activity greater than or equal to about 1.0 log kill at about 23° C. and about 40.0% relative humidity. A method for making the glass may include obtaining a glass article, strengthening the glass article by contact with a first ion-exchange liquid, and contacting the glass article with second ion-exchange liquid comprising an antimicrobial agent.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: August 11, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Nicholas Francis Borrelli, Matthew John Dejneka, Timothy Michael Gross
  • Patent number: 10741784
    Abstract: An organic light emitting diode (OLED) incorporating an enhanced light extraction apparatus in the transparent conductive oxide layer is disclosed. The apparatus for light extraction may comprise a transparent substrate, a transparent electrode comprising one or more discontinuities, and an organic light emitting material stack. The transparent electrode may be disposed on the transparent substrate and comprise a series of features or discontinuities that enhance light extraction improve energy efficiency in the OLED device. The discontinuities may be discrete or continuous and may interrupt the conductivity of the transparent conductive oxide layer.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: August 11, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Michal Mlejnek, Dean Michael Thelen
  • Patent number: 10737973
    Abstract: Embodiments of the present disclosure are directed to coated glass articles which reduce glass particle formation caused by glass to glass contact in pharmaceutical glass filling lines.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: August 11, 2020
    Assignee: CORNING INCORPORATED
    Inventors: John Frederick Bayne, Dana Craig Bookbinder, Theresa Chang, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Kyle Christopher Hoff, Jamie Lynne Morley, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Christopher Lee Timmons
  • Publication number: 20200249406
    Abstract: A rollable optical fiber ribbon utilizing low attenuation, bend insensitive fibers and cables incorporating such rollable ribbons are provided. The optical fibers are supported by a ribbon body, and the ribbon body is formed from a flexible material such that the optical fibers are reversibly movable from an unrolled position to a rolled position. The optical fibers have a large mode filed diameter, such as ?9 microns at 1310 nm facilitating low attenuation splicing/connectorization. The optical fibers are also highly bend insensitive, such as having a macrobend loss of ?0.5 dB/turn at 1550 nm for a mandrel diameter of 15 mm.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 10710928
    Abstract: A method of making an antimicrobial glass article that includes the steps: submersing the article in a strengthening bath to exchange a portion of ion-exchangeable metal ions in the glass article with a portion of ion-exchanging metal ions in the strengthening bath to form a compressive stress layer extending from the first surface to a diffusion depth in the article; removing a portion of the compressive stress layer from the first surface of the article to a first depth above the diffusion depth in the article to define a new first surface and a remaining compressive stress layer; and submersing the article in an antimicrobial bath to exchange a portion of the ion-exchangeable and the ion-exchanging metal ions in the compressive stress layer with a portion of the silver metal ions in the antimicrobial bath to impart an antimicrobial property in the article.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: July 14, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Nicholas Francis Borrelli, Delena Lucinda Justice Duffy, Sumalee Likitvanichkul, Richard Michael Fiacco, Georgiy M Guryanov, Ekaterina Aleksandrovna Kuksenkova, Wageesha Senaratne, Anantha Narayanan Subramanian
  • Patent number: 10696580
    Abstract: An optical fiber with low fictive temperature along with a system and method for making the optical fiber are provided. The system includes a reheating stage that heats the fiber along the process pathway to a temperature sufficient to lower the fictive temperature of the fiber by relaxing the glass structure and/or driving the glass toward a more nearly equilibrium state. The fiber is drawn from a preform, conveyed along a process pathway, cooled and subsequently reheated to increase the time of exposure of the fiber to temperatures conducive to lowering the fictive temperature of the fiber. The process pathway may include multiple reheating stages as well as one or more fiber-turning devices.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: June 30, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Bruce Warren Reding, Pushkar Tandon
  • Publication number: 20200189970
    Abstract: In one or more embodiments disclosed herein, an electronic device may include a display device operable to project an image, a front cover substrate positioned over the display device and including a transparent material, and a protective coating disposed on at least a portion of the non-display area of the front cover substrate. The front cover substrate may include a display area over the display device and a non-display area around at least the perimeter of the front cover substrate. The protective coating may include an inorganic material. The protective coating may not be positioned over the display area.
    Type: Application
    Filed: August 20, 2018
    Publication date: June 18, 2020
    Applicant: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Timothy Michael Gross
  • Publication number: 20200158945
    Abstract: A single mode optical fiber, comprising: (i) a silica based core having a step refractive index profile with an alpha of greater than 10, a relative refractive index ?1MAX, and an outer radius r1, wherein 6.25 microns>r1?4.75 microns, the core further comprising Cl, Ge, or a combination thereof; (ii) a first cladding region in contact with and surrounding the core, the first cladding region having a relative refractive index ?2MIN, an inner radius r1, and an outer radius r2, wherein r2<20 microns; and (iii) an outer cladding region surrounding the first cladding region, the outer cladding region having a relative refractive index ?3. The fiber <1300 nm, a 22 m cable cutoff wavelength <1260 nm; and a bend loss <0.005 dB/turn when the optical fiber is bent around a 30 mm mandrel; <0.5 dB/turn when the fiber is bent around a 20 mm mandrel.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Publication number: 20200150336
    Abstract: An optical fiber includes (i) a chlorine doped silica based core having a core alpha (Core?)?4, a radius r1, and a maximum refractive index delta ?1max % and (ii) a cladding surrounding the core. The cladding surrounding the core includes a) a first inner cladding region adjacent to and in contact with the core and having a refractive index delta ?2, a radius r2, and a minimum refractive index delta ?2min such that ?2min<?1max, b) a second inner cladding adjacent to and in contact with the first inner cladding having a refractive index ?3, a radius r3, and a minimum refractive index delta ?3min such that ?3min<?2, and c) an outer cladding region surrounding the second inner cladding region and having a refractive index ?5, a radius rmax, and a minimum refractive index delta ?3min such that ?3min<?2.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: 10649163
    Abstract: A rollable optical fiber ribbon utilizing low attenuation, bend insensitive fibers and cables incorporating such rollable ribbons are provided. The optical fibers are supported by a ribbon body, and the ribbon body is formed from a flexible material such that the optical fibers are reversibly movable from an unrolled position to a rolled position. The optical fibers have a large mode filed diameter, such as ?9 microns at 1310 nm facilitating low attenuation splicing/connectorization. The optical fibers are also highly bend insensitive, such as having a macrobend loss of ?0.5 dB/turn at 1550 nm for a mandrel diameter of 15 mm.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: May 12, 2020
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon