Patents by Inventor Dana Craig Bookbinder

Dana Craig Bookbinder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190263708
    Abstract: According to one or more embodiments described herein, a three-dimensional laminate glass article may be manufactured by a process which may include heating a glass stack including at least two glass sheets that are unbonded with one another at a first temperature range, fusing the first glass sheet with the second glass sheet by heating the glass stack at a second temperature range, and shaping the glass stack. The first temperature range may be from about 150° C. to about 400° C. for a first period of time of at least about 5 minutes. The second temperature range may be from about 400° C. to about 1200° C.
    Type: Application
    Filed: June 6, 2017
    Publication date: August 29, 2019
    Inventors: Dana Craig Bookbinder, David Alan Deneka, Paul Bennett Dohn, Paul Oakley Johnson, William Edward Lock, David John McEnroe, Pushkar Tandon, Natesan Venkataraman, Sam Samer Zoubi
  • Publication number: 20190256400
    Abstract: An optical fiber with low attenuation is provided. The fiber is produced under conditions that reduce fictive temperature. Processing includes maintaining the fiber at temperatures at or near the glass transition temperature (Tg) for an extended period of time. For silica-based fibers, the preferred temperatures are temperatures between 1000° C. and 1700° C. The extended residence times are achieved in a continuous fiber manufacturing process by increasing the path length of the fiber through a processing region maintained at temperatures between 1000° C. and 1700° C. The increased path length is achieved by including one or more fluid bearing devices in the processing region. The extended residence time in the processing region allows the structure of the glass fiber to relax more completely and to more closely approach the equilibrium state. The more relaxed glass structure leads to a lower fictive temperature and provides fibers with lower attenuation.
    Type: Application
    Filed: May 1, 2019
    Publication date: August 22, 2019
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Bruce Warren Reding, Pushkar Tandon
  • Publication number: 20190258013
    Abstract: An optical ribbon is provided. The optical ribbon includes a plurality of optical transmission elements. The ribbon includes a ribbon body coupled to and supporting the plurality of optical transmission elements. The ribbon body is formed from a flexible polymeric material such that the plurality of optical transmission elements are reversibly movable between an aligned position in which the plurality of optical transmission elements are substantially parallel with each other and a curved position.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Bradley Jerome Blazer, Dana Craig Bookbinder, Ming-Jun Li, Alan Todd Parsons, Pushkar Tandon
  • Publication number: 20190249034
    Abstract: The present disclosure provides coating compositions and cured products formed from the coating compositions. The cured products can be formed at high cure speeds from the coating compositions and feature low Young's modulus, high tear strength, and/or high tensile toughness. The cured products can be used as primary coatings for optical fibers. The primary coatings provide good microbending performance and are resistant to defect formation during fiber coating processing and handling operations. The coating compositions include an oligomer, an alkoxylated monofunctional acrylate monomer, and preferably, an N-vinyl amide compound.
    Type: Application
    Filed: February 4, 2019
    Publication date: August 15, 2019
    Inventors: Dana Craig Bookbinder, Yangbin Chen, Pushkar Tandon, Ruchi Tandon, Bin Yang
  • Publication number: 20190243063
    Abstract: A single mode optical fiber, comprising: A single mode optical fiber, comprising: (i) a silica based core having a refractive index profile with an alpha (?) between 1.8 and 200, a relative refractive index ?1max %, and an outer radius r1, wherein 7 microns >r1?4.5 microns, the core further comprising silica doped with chlorine, wherein the maximum chlorine concentration in the core is greater than 0.5 wt %; and wherein 1.40<X<1.7 where X=[(2?n1(2?1max %r12)1/2/Vc)+(0.0028*Vm)], n1 is maximum refractive index of the core, Vm is moat volume, and Vc is a function of core alpha (?) and (ii) an outer cladding region surrounding the first cladding region, the outer cladding region having a relative refractive index ?4 % such that ?1max>?4 %.
    Type: Application
    Filed: January 29, 2019
    Publication date: August 8, 2019
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Publication number: 20190210768
    Abstract: Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.
    Type: Application
    Filed: March 17, 2019
    Publication date: July 11, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Kaveh Adib, Dana Craig Bookbinder, Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Andrei Gennadyevich Fadeev, James Patrick Hamilton, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Chandan Kumar Saha, Robert Anthony Schaut, Susan Lee Schiefelbein, Christopher Lee Timmons
  • Patent number: 10345543
    Abstract: A highly packed, low bend loss optical cable is provided. The cable includes an outer cable jacket and a plurality of buffer tubes surrounded by the cable jacket. Each buffer tube includes an inner surface defining a channel having a diameter, D1, and an outer surface facing an inner surface of the cable jacket. The cable includes a plural number, N, of optical fibers, located within the channel of each buffer tube and surrounded by the inner surface of the buffer tube. Each optical fiber has an outer diameter, D2. The N optical fibers are densely packed within each buffer tube such that a diameter ratio parameter, ?, is defined as the ratio D1/ D2, and is 2.25+0.143(N)???1.14+0.313(N).
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: July 9, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Dana Craig Bookbinder, Inna Igorevna Kouzmina, Ming-Jun Li, David Alan Seddon, Pushkar Tandon
  • Patent number: 10336644
    Abstract: Methods of reshaping ferrules (20) used in optical fiber cables assemblies (170) are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a distance (?) and angular direction (?) from a true center (30) of the ferrule to the core (46), wherein the true center (30) is based on an outer surface (26) of the ferrule. The methods also include reshaping at least a portion (26P) of the ferrule (20) to define a new true center (30?) of the ferrule (20) and reduce the distance (?). A variety of reshaping techniques are also disclosed.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: July 2, 2019
    Assignee: Corning Optical Communication LLC
    Inventors: Dana Craig Bookbinder, Garrett Andrew Piech, James Scott Sutherland, Michael Brian Webb, Elvis Alberto Zambrano
  • Patent number: 10335902
    Abstract: A method of arresting propagation of an incident crack through a transparent material includes focusing pulsed laser beams into a laser beam focal line directed into the transparent material a series of locations corresponding to a predetermined pattern that is designed to arrest an incident crack that propagates through the transparent material, and generating, with the laser beam focal line (1460), an induced absorption within the transparent material in order to produce a defect (1440) in the transparent material.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: July 2, 2019
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Albert Roth Nieber, Garrett Andrew Piech, Pushkar Tandon, Sergio Tsuda
  • Publication number: 20190186355
    Abstract: A thermal barrier for component surfaces of an engine. The thermal barrier includes a plurality of modules, each module includes a shield. An edge of at least one shield in the array is spaced apart from an edge of an adjacent shield in the array.
    Type: Application
    Filed: August 25, 2017
    Publication date: June 20, 2019
    Inventors: Dana Craig Bookbinder, Roy Joseph Bourcier, Wlliam Edward Lock, Richard Curwood Peterson, Irene Marjorie Slater, Pushkar Tandon
  • Publication number: 20190186356
    Abstract: A segmented thermal barrier for a combustion chamber surface of an internal combustion engine. The segmented thermal barrier includes a plurality of modules, each module with a support and a shield. The edges of shields of at least two adjacent modules are spaced apart by a distance.
    Type: Application
    Filed: August 25, 2017
    Publication date: June 20, 2019
    Inventors: Dana Craig Bookbinder, Roy Joseph Bourcier, William Edward Lock, Richard Curwood Peterson, Irene Marjorie Slater, Pushkar Tandon
  • Patent number: 10322963
    Abstract: An optical fiber with low attenuation is provided. The fiber is produced under conditions that reduce fictive temperature. Processing includes maintaining the fiber at temperatures at or near the glass transition temperature (Tg) for an extended period of time. For silica-based fibers, the preferred temperatures are temperatures between 1000° C. and 1700° C. The extended residence times are achieved in a continuous fiber manufacturing process by increasing the path length of the fiber through a processing region maintained at temperatures between 1000° C. and 1700° C. The increased path length is achieved by including one or more fluid bearing devices in the processing region. The extended residence time in the processing region allows the structure of the glass fiber to relax more completely and to more closely approach the equilibrium state. The more relaxed glass structure leads to a lower fictive temperature and provides fibers with lower attenuation.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: June 18, 2019
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Bruce Warren Reding, Pushkar Tandon
  • Publication number: 20190177216
    Abstract: An optical fiber and its manufacture are provided. The optical fiber includes an optical waveguide and a cured primary coating layer surrounding the optical waveguide. The optical fiber further includes a cured secondary coating layer surrounding the cured primary coating layer. The optical fiber further includes a cured tertiary ink coating layer surrounding the cured secondary coating layer. The cured tertiary ink coating layer has a glass transition temperature (Tg-ink) of greater than or equal to 75° C.
    Type: Application
    Filed: November 8, 2018
    Publication date: June 13, 2019
    Inventors: Dana Craig Bookbinder, Robert Clark Moore, Darren Andrew Stainer, Pushkar Tandon, Ruchi Tandon, Michael James Todt
  • Publication number: 20190169073
    Abstract: Disclosed herein are ceramic materials comprising a ceramic phase and a glass phase and at least one of a reduced alkali content or a reduced iron content. Ceramic materials having relatively low creep rates are also disclosed herein, as well as glass forming bodies comprising such materials, and methods for making glass articles using such forming bodies. Refractory bricks for constructing glass manufacturing vessels are also disclosed. Methods for treating ceramic materials to reduce at least one of the alkali or iron content are further disclosed herein.
    Type: Application
    Filed: May 19, 2017
    Publication date: June 6, 2019
    Inventors: Monika Backhaus-Ricoult, Dana Craig Bookbinder, Richard Fiacco, Thomas Dale Ketcham, Paul Maynard Schermerhorn
  • Patent number: 10310202
    Abstract: An optical ribbon is provided. The optical ribbon includes a plurality of optical transmission elements. The ribbon includes a ribbon body coupled to and supporting the plurality of optical transmission elements. The ribbon body is formed from a flexible polymeric material such that the plurality of optical transmission elements are reversibly movable between an aligned position in which the plurality of optical transmission elements are substantially parallel with each other and a curved position.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: June 4, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Bradley Jerome Blazer, Dana Craig Bookbinder, Ming-Jun Li, Alan Todd Parsons, Pushkar Tandon
  • Patent number: 10307333
    Abstract: The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. A tenacious inorganic coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the tenacious inorganic coating may have a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: June 4, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Publication number: 20190162097
    Abstract: Exhaust gas treatment articles and methods of manufacturing the same are disclosed herein. An exhaust gas treatment article includes a porous ceramic honeycomb body with multiple channel walls defining cell channels that extend in an axial direction and an outer peripheral surface that extends in the axial direction. The exhaust gas treatment article further includes a metal layer that surrounds the porous ceramic honeycomb body and that is in direct contact with at least a portion of the outer peripheral surface of the porous ceramic honeycomb body. The metal layer includes a joint. The exhaust gas treatment article includes a shim that is located under the joint and that is in direct contact with at least a portion of the outer peripheral surface of the porous ceramic honeycomb body.
    Type: Application
    Filed: July 13, 2017
    Publication date: May 30, 2019
    Inventors: Rajesh Bhargava, Dana Craig Bookbinder, Curtis Richard Cowles, Jacob George, Jason Thomas Harris, Seth Thomas Nickerson, Pushkar Tandon
  • Publication number: 20190162915
    Abstract: Methods of forming a ferrule are disclosed where the ferrule includes an inner member and an outer member. An optical fiber is secured in an axial bore of the inner member, and then offset of a core of the optical fiber from a geometric center of the inner member is determined. The outer member is then formed over the inner member to “correct” for this offset so that the core of the optical fiber ends up closer to the geometric center of the resulting ferrule. Related ferrules and cable assemblies including the same are also disclosed.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 30, 2019
    Inventors: Dana Craig Bookbinder, Garrett Andrew Piech, James Scott Sutherland, Michael Brian Webb, Elvis Alberto Zambrano
  • Publication number: 20190162896
    Abstract: A single mode optical fiber, comprising: (i) a silica based core having a graded refractive index profile with an alpha of less than 5, a relative refractive index ?1max, and an outer radius r1, wherein 10 microns>r1?6.5 microns, the core comprising Cl, Ge, or a combination thereof; (ii) a first cladding region in contact with and surrounding the core, the first cladding region having a relative refractive index ?2min, an inner radius r1, and an outer radius r2, wherein r2<20 microns; and (iii) an outer cladding region surrounding the first cladding region, the outer cladding region having a relative refractive index ?3. The fiber has MFD at 1310 nm>than 9 microns, a zero dispersion wavelength <1306 nm; a 22 m cable cutoff wavelength <1260nm; and a bend loss <0.005 dB/turn when the fiber is bent around a 30 mm mandrel; and <0.5dB/turn when the fiber is bent around a 20 mm mandrel.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 30, 2019
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: RE47499
    Abstract: An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-in- duced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: July 9, 2019
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Edward John Fewkes, Stephan Lvoich Logunov