Patents by Inventor Dang CHENG

Dang CHENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913055
    Abstract: Disclosed herein relates to biopharmaceuticals, and more particularly to a continuous flow method for preparing (R)-3-hydroxy-5-hexenoate. Carbonyl reductase and isopropanol dehydrogenase are co-immobilized onto an inert solid medium simultaneously to prepare a carbonyl reductase/isopropanol dehydrogenase co-immobilized catalyst, which is then filled into a microchannel reactor of the micro reaction system. A solution containing substrate 3-carbonyl-5-hexenoate is subsequently pumped into the microchannel reactor to perform an asymmetric carbonyl reduction reaction to obtain (R)-3-hydroxy-5-hexenoate.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: February 27, 2024
    Assignee: Fudan University
    Inventors: Fener Chen, Dang Cheng, Zedu Huang, Chen Hu, Meifen Jiang, Minjie Liu, Huashan Huang
  • Patent number: 11905229
    Abstract: A method of synthesizing diclofenac sodium, including: subjecting aniline and chloroacetic acid to amidation to obtain 2-chloro-N-phenylacetamide; subjecting 2-chloro-N-phenylacetamide and 2,6-dichlorophenol to condensation reaction to obtain 2-(2,6-dichlorophenoxy)-N-phenylacetamide; subjecting 2-(2,6-dichlorophenoxy)-N-phenylacetamide to Smiles rearrangement in the presence of an inorganic base to obtain N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide; subjecting N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide and thionyl chloride to chlorination to obtain N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide; subjecting N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide to Friedel-Crafts alkylation in the presence of a Lewis acid catalyst to obtain 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one; and subjecting 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one to hydrolysis in the presence of an inorganic base to obtain diclofenac sodium.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: February 20, 2024
    Assignee: Fudan University
    Inventors: Fener Chen, Dang Cheng, Lulu Wang, Ge Meng, Yingtang Ning, Zedu Huang
  • Patent number: 11834388
    Abstract: This application relates to pharmaceutical engineering, and more particularly to a continuous-flow preparation method of diclofenac sodium. The continuous-flow preparation method includes: subjecting aniline and chloroacetic acid to amidation to obtain 2-chloro-N-phenylacetamide (3); subjecting 2-chloro-N-phenylacetamide (3) and 2,6-dichlorophenol to continuous condensation to obtain N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide (5); subjecting N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide (5) and thionyl chloride to chlorination to obtain N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide (6); subjecting N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide (6) to Friedel-Crafts alkylation in the presence of aluminum chloride to obtain 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one (7); and subjecting 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one (7) to hydrolysis to obtain the diclofenac sodium.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: December 5, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Dang Cheng, Lulu Wang, Ge Meng, Yingtang Ning
  • Patent number: 11827581
    Abstract: A full continuous-flow preparation method of L-carnitine, including: mixing chlorine gas and a diketene solution via a first micromixer followed by transportation to a first microchannel reactor for continuous chlorination and esterification reaction to obtain 4-chloroacetoacetate; feeding the 4-chloroacetoacetate and a reductase to a second micromixer and a second microchannel reactor in sequence for continuous catalytic reaction to obtain (R)-4-chloro-3-hydroxybutyrate; simultaneously transporting the (R)-4-chloro-3-hydroxybutyrate and a trimethylamine solution to a third micromixer and a third microchannel reactor for continuous substitution and hydrolysis reaction; and subjecting the reaction mixture to desalination and concentration to obtain the L-carnitine.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: November 28, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Minjie Liu, Meifen Jiang, Dang Cheng, Chao Yu, Huashan Huang
  • Patent number: 11802299
    Abstract: An enzyme-catalyzed method of synthesizing (2S,3R)-2-substituted aminomethyl-3-hydroxybutyrate, including: preparing engineered bacteria containing a carbonyl reductase SsCR-encoding gene; preparing a resting cell suspension of the engineered bacteria; preparing a culture containing carbonyl reductase; and mixing the culture containing carbonyl reductase with substrate 2-substituted aminomethyl-3-one butyrate, glucose dehydrogenase, a cosolvent, glucose and a cofactor followed by asymmetric carbonyl reduction to obtain (2S,3R)-2-substituted aminomethyl-3-hydroxybutyrate. The amino acid sequence of the carbonyl reductase is shown in SEQ ID NO.1.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: October 31, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Yuan Tao, Zedu Huang, Dang Cheng, Ge Meng
  • Publication number: 20230234911
    Abstract: A method of synthesizing diclofenac sodium, including: subjecting aniline and chloroacetic acid to amidation to obtain 2-chloro-N-phenylacetamide; subjecting 2-chloro-N-phenylacetamide and 2,6-dichlorophenol to condensation reaction to obtain 2-(2,6-dichlorophenoxy)-N-phenylacetamide; subjecting 2-(2,6-dichlorophenoxy)-N-phenylacetamide to Smiles rearrangement in the presence of an inorganic base to obtain N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide; subjecting N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide and thionyl chloride to chlorination to obtain N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide; subjecting N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide to Friedel-Crafts alkylation in the presence of a Lewis acid catalyst to obtain 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one; and subjecting 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one to hydrolysis in the presence of an inorganic base to obtain diclofenac sodium.
    Type: Application
    Filed: February 22, 2023
    Publication date: July 27, 2023
    Inventors: Fener CHEN, Dang CHENG, Lulu WANG, Ge MENG, Yingtang NING, Zedu HUANG
  • Patent number: 11708363
    Abstract: Disclosed herein relates to organic synthesis, and more particularly to a method for preparing a key intermediate for the synthesis of statins. The key intermediate is 2-[(4R,6S)-6-[(benzo[d]thiazol-2-ylthio)methyl]-2,2-disubstituted-1,3-dioxan-4-yl] acetate of formula (I): where R1 is a C1-C8 alkyl group, a C3-C8 cycloalkyl group, a monosubstituted or polysubstituted aryl group, or monosubstituted or polysubstituted aralkyl group; R2 is hydrogen, or monosubstituted or polysubstituted C1-C3 alkyl group, or halogen; and R3 and R4 are each independently a C1-C5 alkyl group, a C3-C7 cycloalkyl group, a C3-C7 cycloalkenyl group, a C1-C3 alkoxy group, a C6-C10 aryl group, or C7-C12 aralkyl group. In the method, a halomethyl compound and a thiol reagent are subjected to nucleophilic substitution in an organic solvent to synthesize a thioether, which then undergoes ketal exchange reaction with a carbonyl compound (V) in the presence of an organic acid to obtain a target product.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: July 25, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Dang Cheng, Minjie Liu, Zedu Huang, Yuan Tao, Jiaqi Wang
  • Patent number: 11708321
    Abstract: A method for preparing (dimethylaminomethylene) malononitrile by using a micro reaction system. Cyanoacetamide, N,N-dimethylformamide and a catalyst are mixed to obtain a mixture, and the mixture and phosphorus oxychloride are simultaneously pumped into the micro reaction system that includes a micromixer and a microchannel reactor connected in series for continuous dehydration condensation. After adjusted to a target pH, the crude product is subjected to continuous liquid-liquid extraction with an organic solvent in a centrifugal extraction unit comprising a plurality of annular centrifugal extractors connected in series. The organic phase is collected to obtain the target product (dimethyl aminomethylene) malononitrile.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: July 25, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Dang Cheng, Meifen Jiang, Minjie Liu, Huashan Huang, Lulu Wang
  • Publication number: 20230192595
    Abstract: This application relates to pharmaceutical engineering, and more particularly to a continuous-flow preparation method of diclofenac sodium. The continuous-flow preparation method includes: subjecting aniline and chloroacetic acid to amidation to obtain 2-chloro-N-phenylacetamide (3); subjecting 2-chloro-N-phenylacetamide (3) and 2,6-dichlorophenol to continuous condensation to obtain N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide (5); subjecting N-(2,6-dichlorophenyl)-2-hydroxy-N-phenylacetamide (5) and thionyl chloride to chlorination to obtain N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide (6); subjecting N-(2,6-dichlorophenyl)-2-chloro-N-phenylacetamide (6) to Friedel-Crafts alkylation in the presence of aluminum chloride to obtain 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indo1-2-one (7); and subjecting 1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one (7) to hydrolysis to obtain the diclofenac sodium.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 22, 2023
    Inventors: Fener CHEN, Dang CHENG, Lulu WANG, Ge MENG, Yingtang NING
  • Publication number: 20230183260
    Abstract: A full continuous-flow preparation method of (+)-biotin, including: subjecting a cyclic anhydride and a chiral biphenyl propylene glycol to asymmetric ring-opening reaction to produce a first intermediate, which undergoes selective reduction with a borohydride and cyclization with an inorganic mineral acid to produce (3aS, 6aR)-lactone; subjecting the (3aS, 6aR)-lactone and a sulfenylating reagent to sulfenylation to produce (3aS, 6aR)-thiolactone, which undergoes Fukuyama coupling with a zinc reagent in the presence of a palladium catalyst and elimination reaction in the presence of an inorganic mineral acid to produce an alkenyl valerate compound; subjecting the alkenyl valerate compound to reduction in the presence of a Pd/C catalyst to produce a valerate ester, which undergoes hydrolysis to produce a valeric acid salt; and subjecting the valeric acid salt to debenzylation in the presence of an inorganic mineral acid to produce the target product (+)-biotin.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 15, 2023
    Inventors: Fener CHEN, Dang CHENG, Jiale WU, Meifen JIANG, Li WAN, Jiaqi WANG
  • Patent number: 11618727
    Abstract: This disclosure relates to organic synthesis, and more particularly to a method for preparing 3-chloro-4-oxopentyl acetate using a fully continuous-flow micro-reaction system. In this method, chlorine and an acetylbutyrolactone-containing liquid are simultaneously transported to a first micro-channel reactor for continuous chlorination to obtain ?-acetyl-?-chloro-?-butyrolactone. The reaction mixture is simultaneously transported to a micro-mixer and a second micro-channel reactor together with a mixed solution of glacial acetic acid, hydrochloric acid and water, and the continuous acylation is carried out to obtain 3-chloro-4-oxopentyl acetate. After quenched with a quenching agent, the reaction mixture was subjected to extraction and separation to obtain the 3-chloro-4-oxopentyl acetate.
    Type: Grant
    Filed: July 24, 2021
    Date of Patent: April 4, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Meifen Jiang, Minjie Liu, Dang Cheng, Chao Yu, Huashan Huang
  • Patent number: 11554356
    Abstract: A full continuous flow preparation method of 2-methyl-4-amino-5-aminomethylpyrimidine. A mixed solution of cyanoacetamide, N,N-dimethylformamide and a catalyst is mixed with phosphorus oxychloride in a first micro-mixer, and then the reaction mixture undergoes continuous flow reaction in a microchannel reactor to obtain (dimethylaminomethylene) malononitrile. The reaction mixture is subjected to continuous quenching, extraction and separation, and the organic phase is concentrated, mixed with a methanol solution, and then reacted with an organic base to obtain 2-methyl-4-amino-5-cyanopyrimidine. After the mixed liquid is continuously filtered, the filter cake is dissolved in methanol, mixed with hydrogen in a second micro-mixer, and then transported to a fixed-bed reactor for hydrogenation reaction. The products are concentrated, dried and purified to obtain the desired 2-methyl-4-amino-5-aminomethylpyrimidine.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: January 17, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Meifen Jiang, Minjie Liu, Huashan Huang, Dang Cheng
  • Patent number: 11554355
    Abstract: Disclosed herein relates to pharmaceutical engineering, and more particularly to a micro reaction system and a method for preparing 2-methyl-4-amino-5-cyanopyrimidine using the same. An acetamidine hydrochloride solution and an (dimethylaminomethylene)malononitrile solution are separately pumped into the micro reaction system including a micromixer and an agitating microchannel reactor in communication at the same time for a continuous condensation-cyclization reaction to obtain 2-methyl-4-amino-5-cyanopyrimidine.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: January 17, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Meifen Jiang, Dang Cheng, Minjie Liu, Huashan Huang
  • Patent number: 11554354
    Abstract: A micro-reaction system and a method for preparing 2-methyl-4-amino-5-aminomethyl pyrimidine. A Raney nickel catalyst is modified with formalin, and the modified Raney nickel catalyst is filled into a micro-channel reactor of the micro-reaction system. A substrate solution containing 2-methyl-4-amino-5-cyanopyrimidine and a base and hydrogen are transported to the micro-mixer and the micro-channel reactor in sequence for continuous catalytic hydrogenation to obtain 2-methyl-4-amino-5-aminomethyl pyrimidine.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: January 17, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Meifen Jiang, Dang Cheng, Minjie Liu, Huashan Huang
  • Patent number: 11555008
    Abstract: A method for preparing L-carnitine using a micro-reaction system. (R)-4-halo-3-hydroxybutyrate was subjected to quaternization and hydrolysis in an aqueous trimethylamine solution in the presence of an inorganic base in a micro-channel reactor to produce the L-carnitine.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: January 17, 2023
    Assignee: Fudan University
    Inventors: Fener Chen, Dang Cheng, Minjie Liu, Meifen Jiang, Zedu Huang, Zexu Wang, Jiaqi Wang
  • Patent number: 11441163
    Abstract: An enzyme-catalyzed synthesis of (1S,5R)-bicyclolactone. A first genetically-engineered bacterium containing Baeyer-Villiger monooxygenase gene and a second genetically-engineered bacterium containing glucose dehydrogenase gene are constructed and then suspended with culture medium to prepare a first suspension and a second suspension, respectively. The first and second suspensions are centrifuged to respectively produce a first supernatant containing Baeyer-Villiger monooxygenase and a second supernatant containing glucose dehydrogenase, which are mixed. The mixed supernatant is then mixed with a raceme of a substituted bicyclo[3.2.0]-hept-2-en-6-one, a solvent, a hydrogen donor and a cofactor to perform an asymmetric Baeyer-Villiger oxidation to produce the (1S,5R)-bicyclolactone, where an amino acid sequence of the Baeyer-Villiger monooxygenase is shown in SEQ ID NO:1.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: September 13, 2022
    Assignee: Fudan University
    Inventors: Fener Chen, Kejie Zhu, Zedu Huang, Dang Cheng, Jiaqi Wang, Yuan Tao
  • Publication number: 20220267253
    Abstract: A full continuous-flow preparation method of L-carnitine, including: mixing chlorine gas and a diketene solution via a first micromixer followed by transportation to a first microchannel reactor for continuous chlorination and esterification reaction to obtain 4-chloroacetoacetate; feeding the 4-chloroacetoacetate and a reductase to a second micromixer and a second microchannel reactor in sequence for continuous catalytic reaction to obtain (R)-4-chloro-3-hydroxybutyrate; simultaneously transporting the (R)-4-chloro-3-hydroxybutyrate and a trimethylamine solution to a third micromixer and a third microchannel reactor for continuous substitution and hydrolysis reaction; and subjecting the reaction mixture to desalination and concentration to obtain the L-carnitine.
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Inventors: Fener CHEN, Minjie LIU, Meifen JIANG, Dang CHENG, Chao YU, Huashan HUANG
  • Patent number: 11299451
    Abstract: A method for synthesizing 2-(1-cyclohexenyl)ethylamine. Cyclohexanone (II) is reacted with a Grignard reagent in a first organic solvent to produce 1-vinylcyclohexanol (III), which is then subjected to chlorination and rearrangement reaction with a chlorinating reagent in a second organic solvent in the presence of an organic base to synthesize (2-chloroethylmethylene)cyclolxane (IV). Then (2-chloroethylmethylene)cyclohexane (IV) and urotropine are subjected to quaternization in a third organic solvent to synthesize N-cyclohexylidene ethyl urotropine hydrochloride (V). Finally, the N-cyclohexylidene ethyl urotropine hydrochloride (V) undergoes hydrolysis and rearrangement reaction in a solvent in the presence of an inorganic mineral acid to synthesize 2-(1-cyclohexenyl)ethylamine (I).
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: April 12, 2022
    Assignee: Fudan University
    Inventors: Fener Chen, Dang Cheng, Zedu Huang, Zhining Li, Meifen Jiang, Yuan Tao
  • Publication number: 20220089524
    Abstract: A method for preparing (dimethylaminomethylene) malononitrile by using a micro reaction system. Cyanoacetamide, N,N-dimethylformamide and a catalyst are mixed to obtain a mixture, and the mixture and phosphorus oxychloride are simultaneously pumped into the micro reaction system that includes a micromixer and a microchannel reactor connected in series for continuous dehydration condensation. After adjusted to a target pH, the crude product is subjected to continuous liquid-liquid extraction with an organic solvent in a centrifugal extraction unit comprising a plurality of annular centrifugal extractors connected in series. The organic phase is collected to obtain the target product (dimethyl aminomethylene) malononitrile.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 24, 2022
    Inventors: Fener CHEN, Dang CHENG, Meifen JIANG, Minjie LIU, Huashan HUANG, Lulu WANG
  • Publication number: 20220090151
    Abstract: An enzyme-catalyzed method of synthesizing (2S, 3R)-2-substituted aminomethyl-3-hydroxybutyrate, including: preparing engineered bacteria containing a carbonyl reductase SsCR-encoding gene; preparing a resting cell suspension of the engineered bacteria; preparing a culture containing carbonyl reductase; and mixing the culture containing carbonyl reductase with substrate 2-substituted aminomethyl-3-one butyrate, glucose dehydrogenase, a cosolvent, glucose and a cofactor followed by asymmetric carbonyl reduction to obtain (2S, 3R)-2-substituted aminomethyl-3-hydroxybutyrate. The amino acid sequence of the carbonyl reductase is shown in SEQ ID NO.1.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 24, 2022
    Inventors: Fener CHEN, Yuan TAO, Zedu HUANG, Dang CHENG, Ge MENG