Patents by Inventor Daniel A. Deninger

Daniel A. Deninger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180262575
    Abstract: In an embodiment, a subordinate mobile communication device (SMCD) receives a content access profile from a dispatcher. The content access profile includes (i) proxy server selection criteria to facilitate the SMCD to select between a plurality of proxy servers based on a current transport mechanism type (e.g., WiFi, 3G, Satellite, etc.), each of the plurality of proxy servers being configured by the dispatcher to provide different degrees of support for Internet-based services to the SMCD, and/or (ii) a set of Internet-based service access rules to facilitate the SMCD to independently determine whether to grant or deny access by the SMCD to Internet-based services based on the current transport mechanism type of a connection between the SMCD and an access network. The SMCD determines its current transport mechanism type and uses the content access profile to selectively engage with a given Internet-based service.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 13, 2018
    Inventors: David S. CHA, Daniel A. DENINGER, Kenneth H. OERTLE, Jason M. RIGGS
  • Patent number: 10003652
    Abstract: In an embodiment, a subordinate mobile communication device (SMCD) receives a content access profile from a dispatcher. The content access profile includes (i) proxy server selection criteria to facilitate the SMCD to select between a plurality of proxy servers based on a current transport mechanism type (e.g., WiFi, 3G, Satellite, etc.), each of the plurality of proxy servers being configured by the dispatcher to provide different degrees of support for Internet-based services to the SMCD, and/or (ii) a set of Internet-based service access rules to facilitate the SMCD to independently determine whether to grant or deny access by the SMCD to Internet-based services based on the current transport mechanism type of a connection between the SMCD and an access network. The SMCD determines its current transport mechanism type and uses the content access profile to selectively engage with a given Internet-based service.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 19, 2018
    Assignee: OMNITRACS, LLC
    Inventors: David S. Cha, Daniel A. Deninger, Kenneth H. Oertle, Jason M. Riggs
  • Publication number: 20180162414
    Abstract: This disclosure relates to a system and method for determining vehicle operator preparedness for vehicles that support both autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to vehicles and their operation. During autonomous vehicle operation, the system gauges the level of responsiveness of an individual vehicle operator through challenges and corresponding responses. Based on the level of responsiveness, a preparedness metric is determined for each vehicle operator individually.
    Type: Application
    Filed: January 25, 2018
    Publication date: June 14, 2018
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9981674
    Abstract: This disclosure relates to a rail vehicle event analysis system configured to facilitate analysis of rail vehicle event records that correspond to rail vehicle events. The system may be configured to visually present a user with information related to operation of a rail vehicle. The user may review the information related to operation of the rail vehicle in real time, responsive to the rail vehicle being involved in a rail vehicle event, and/or at other times. The system may be configured to visually present information based on output signals generated by one or more sensors associated with the rail vehicle. The system may synchronize the presented information such that information from individual sensors may be compared and/or viewed at the same time by the user. The system may be configured to receive observations made by the user based on the user's review of the presented visual information.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: May 29, 2018
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Mark Freitas, Daniel A. Deninger, Shahriar Ravari
  • Publication number: 20180120840
    Abstract: This disclosure relates to a system and method for transitioning vehicle control between autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to the vehicle and its operation. During autonomous vehicle operation, the system gauges the level of responsiveness of a vehicle operator through challenges and corresponding responses. The system determines when to present a challenge to the vehicle operator based on internal and external factors. If necessary, the system will transition from an autonomous operation mode to a manual operation mode.
    Type: Application
    Filed: October 12, 2017
    Publication date: May 3, 2018
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9958473
    Abstract: This disclosure relates to a system and method for calibrating sensors upon installation in a vehicle. The system includes a sensor set configured to generate output signals conveying vectors of acceleration of the vehicle. The system determines a three-dimensional orientation of the sensor set in relation to the vehicle. The system converts output signals from the sensor set into vectors of acceleration of the vehicle.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: May 1, 2018
    Assignee: SmartDrive Systems, Inc.
    Inventors: Slaven Sljivar, David Forney, Mark Freitas, Daniel A. Deninger, Jeffrey Griswold, Jason Palmer
  • Patent number: 9908546
    Abstract: This disclosure relates to a system configured to detect rail vehicle events. Some or all of the system may be installed in a rail vehicle and/or be otherwise coupled with the rail vehicle. In some implementations, the system may detect rail vehicle events based on pre-determined rail vehicle event criteria sets. The system may include one or more sensors configured to generate output signals conveying information related to the rail vehicle. In some implementations, the system may detect rail vehicle events based on a comparison of the information conveyed by the output signals from the sensors and/or parameters determined based on the output signals to the pre-determined rail vehicle event criteria sets.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 6, 2018
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Mark Freitas, Daniel A. Deninger, Shahriar Ravari
  • Patent number: 9908535
    Abstract: This disclosure relates to a system and method for determining vehicle operator preparedness for vehicles that support both autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to vehicles and their operation. During autonomous vehicle operation, the system gauges the level of responsiveness of an individual vehicle operator through challenges and corresponding responses. Based on the level of responsiveness, a preparedness metric is determined for each vehicle operator individually.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: March 6, 2018
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9902410
    Abstract: This disclosure relates to a system configured to identify geolocations in a rail network where rail vehicle events are likely to occur. In some implementations, the system may include one or more of a processor, a computing system, electronic storage, external resources, and/or other components. The system may be configured to illustrate the geolocations in the rail network where rail vehicle events are likely to occur on a map of the rail network, predict geolocations in the rail network where rail vehicle events will likely occur, generate coaching information based on the identified geolocations, and/or perform other actions.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: February 27, 2018
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Mark Freitas, Daniel A. Deninger, Shahriar Ravari
  • Publication number: 20180033225
    Abstract: This disclosure relates to a system and method for detecting vehicle events. Some or all of the system may be installed in a vehicle, operate at the vehicle, and/or be otherwise coupled with a vehicle. The system includes one or more sensors configured to generate output signals conveying information related to the vehicle. The system receives contextual information from a source external to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals from the sensors and the received contextual information.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 1, 2018
    Inventors: Jason PALMER, Mark FREITAS, Daniel A. DENINGER, David Forney, Slaven SLJIVAR, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9823657
    Abstract: This disclosure relates to a system and method for transitioning vehicle control between autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to the vehicle and its operation. During autonomous vehicle operation, the system gauges the level of responsiveness of a vehicle operator through challenges and corresponding responses. The system determines when to present a challenge to the vehicle operator based on internal and external factors. If necessary, the system will transition from an autonomous operation mode to a manual operation mode.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: November 21, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Publication number: 20170330397
    Abstract: This disclosure relates to a system and method for detecting vehicle events. The system includes sensors configured to generate output signals conveying information related to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals. The system selects a subset of sensors based on the detected vehicle event. The system captures and records information from the selected subset of sensors. The system transfers the recorded information to a remote server or provider.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 16, 2017
    Inventors: Jason PALMER, Mark FREITAS, Daniel A. DENINGER, David Forney, Slaven SLJIVAR, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9786104
    Abstract: This disclosure relates to a system and method for detecting vehicle events. Some or all of the system may be installed in a vehicle, operate at the vehicle, and/or be otherwise coupled with a vehicle. The system includes one or more sensors configured to generate output signals conveying information related to the vehicle. The system receives contextual information from a source external to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals from the sensors and the received contextual information.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: October 10, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Jeffrey Griswold, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya
  • Publication number: 20170274907
    Abstract: This disclosure relates to a system and method for determining responsiveness of a driver of a vehicle to feedback regarding driving behaviors. The system may include a sensor configured to generate output signals conveying first driving behavior information, which may characterize operation of the vehicle by the driver. The system may include one or more processors configured to obtain the first driving behavior information. The one or more processors may effectuate provision of feedback defined by feedback information based on the first driving behavior. The sensor may be configured to output signals conveying second driving behavior information, which may characterize operation of the vehicle by the driver during and/or subsequent to the provision of the feedback. The one or more processors may be configured to obtain the second driving behavior information and assess responsiveness of the driver to the feedback based on the second driving behavior information.
    Type: Application
    Filed: April 10, 2017
    Publication date: September 28, 2017
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Publication number: 20170278318
    Abstract: This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
    Type: Application
    Filed: June 12, 2017
    Publication date: September 28, 2017
    Inventors: Jason Palmer, Slaven Sljivar, Daniel A. Deninger, Alekh Vaidya, Jeffrey Griswold, Mark Freitas
  • Publication number: 20170213397
    Abstract: This disclosure relates to a system and method for detecting vehicle events. Some or all of the system may be installed in a vehicle, operate at the vehicle, and/or be otherwise coupled with a vehicle. The system includes one or more sensors configured to generate output signals conveying information related to the vehicle. The system receives contextual information from a source external to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals from the sensors and the received contextual information.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 27, 2017
    Inventors: Jason PALMER, Mark FREITAS, Daniel A. DENINGER, David Forney, Slaven SLJIVAR, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9679420
    Abstract: This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: June 13, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Daniel A. Deninger, Alekh Vaidya, Jeffrey Griswold, Mark Freitas
  • Patent number: 9663118
    Abstract: This disclosure relates to a system and method for determining vehicle operator preparedness for vehicles that support both autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to vehicles and their operation. During autonomous vehicle operation, the system gauges the level of responsiveness of an individual vehicle operator through challenges and corresponding responses. Based on the level of responsiveness, a preparedness metric is determined for each vehicle operator individually.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: May 30, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9663127
    Abstract: This disclosure relates to a system and method for detecting and recording rail vehicle events. The system comprises one or more cameras, one or more sensors, non-transient electronic storage, one or more physical computer processors, and/or other components. The one or more cameras may be configured to acquire visual information representing a rail vehicle environment. The one or more sensors may be configured to generate output signals conveying operation information related to operation of the rail vehicle. The non-transient electronic storage may be configured to store electronic information. The one or more physical computer processors may be configured to detect rail vehicle events based on the output signals and facilitate electronic storage of the visual information and the operation information for a period of time that includes the rail vehicle event in the non-transient electronic storage.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: May 30, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Mark Freitas, Daniel A. Deninger, Shahriar Ravari
  • Patent number: 9639804
    Abstract: This disclosure relates to a system and method for determining responsiveness of a driver of a vehicle to feedback regarding driving behaviors. The system may include a sensor configured to generate output signals conveying first driving behavior information, which may characterize operation of the vehicle by the driver. The system may include one or more processors configured to obtain the first driving behavior information. The one or more processors may effectuate provision of feedback defined by feedback information based on the first driving behavior. The sensor may be configured to output signals conveying second driving behavior information, which may characterize operation of the vehicle by the driver during and/or subsequent to the provision of the feedback. The one or more processors may be configured to obtain the second driving behavior information and assess responsiveness of the driver to the feedback based on the second driving behavior information.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: May 2, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold