Patents by Inventor Daniel Aghassian

Daniel Aghassian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9498632
    Abstract: Receiver and digital demodulation circuitry for an external controller for communicating with an implantable medical device (IMD) is disclosed. A Digital Signal Processor (DSP) is used to sample received analog data transmitted from the IMD at a lower rate than would otherwise be required for the frequency components in the transmitted data by the Nyquist sampling criteria. To allow for this reduced sampling rate, the incoming data is shifted to a lower intermediate frequency using a switching circuit. The switching circuit receives a clock signal, which is preferably but not necessarily the same clock signal used by the DSP to sample the data. The switching circuit multiplies the received data with the clock signal to produce lower intermediate frequencies, which can then be adequately sampled at the DSP at the reduced sampling rate per the Nyquist sampling criteria.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: November 22, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Thomas W. Stouffer, Daniel Aghassian, Lev Freidin, Vasily Dronov
  • Patent number: 9446254
    Abstract: The disclosed means of determining alignment between an external charger and an implantable medical device (IMD) involves the use of reflected impedance modulation, i.e., by measuring at the external charger reflections arising from modulating the impedance of the charging coil in the IMD. During charging, the charging coil in the IMD is pulsed to modulate its impedance. The difference in the coil voltage (?V) produced at the external charger as a result of these pulses is assessed and is used by the external charger to indicate coupling. If the magnitude of ?V is above a threshold, the external charger considers the coupling to the IMD to be adequate, and an alignment indicator in the external charger is controlled accordingly. The magnitude of Vcoil can be assessed in addition to ?V to determine alignment with the IMD with improved precision, and/or to further define a high quality alignment condition.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 20, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert Ozawa, Daniel Aghassian
  • Publication number: 20160263385
    Abstract: Disclosed is a charging coil assembly for a mobile device able to wirelessly provide power to charge a battery in an Implantable Medical Device (IMD). The assembly includes a coaxial connector that can be inserted into a coaxial audio port on the mobile device to allow bi-directional communications between the assembly and the mobile device. One or more housings coupled to the connector by a cable can include control circuitry, a charging coil, and a battery. The charging coil can be driven by control circuitry in the assembly or by a charging audio signal at an audio frequency provided by the mobile device via the audio port and connector. A Charging Application on the mobile device can detect and authenticate the charging coil assembly, and render a charging graphical user interface on the mobile device to control and/or monitor charging of the IMD.
    Type: Application
    Filed: February 22, 2016
    Publication date: September 15, 2016
    Inventor: Daniel Aghassian
  • Patent number: 9407110
    Abstract: An external charging system for charging or powering an implantable medical device is disclosed which is self-affixing to the patient without the need for a holding device. The charging system can comprise a charging coil attached to a flexible member. The flexible member is bendable, and when bent will firmly hold its position on the patient. The system can include an electronics module including a user interface and the necessary electronics for activating the charging coil to produce a magnetic charging field. Wires can couple the charging coil in the coil module to the electronics in the electronics modules. The entire assembly can be encased in a water proof sleeve having a high-friction surface, which protects the charging system and helps the charging system to adhere to the patient.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: August 2, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Mun Pook Lui, Daniel Aghassian
  • Patent number: 9401625
    Abstract: Disclosed are an external charger including a solar cell array for charging or powering an implantable medical device (IMD), and a cradle including a solar cell array for charging or powering an external charger for charging or powering an implantable medical device. The disclosed improved external charger or improved cradle are particularly beneficial for charging a battery in an external charger used to charge or power an IMD when a power source is otherwise unavailable, such as a wall socket.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: July 26, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis Zottola, Daniel Aghassian
  • Publication number: 20160193472
    Abstract: The disclosed system for providing closed loop charging between an external charger and an implantable medical device such as an IPG involves the use of reflected impedance modulation, i.e., by measuring at the external charger reflections arising from modulating the impedance of the charging coil in the IPG. During charging, the charging coil in the IPG is periodically pulsed to modulate its impedance. The magnitude of the change in the coil voltage produced at the external charger ?V as a result of these pulses is assessed and is used by the controller circuitry in the external charger as indicative of the coupling between the external charger and the IPG. The external charger adjusts its output power (e.g., Icharge) in accordance with the magnitude of ?V, thus achieving closed loop charging without the need of telemetering coupling parameters from the IPG.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 7, 2016
    Inventors: Robert Ozawa, Daniel Aghassian
  • Patent number: 9381364
    Abstract: Methods for optimizing telemetry in an implantable medical device system are disclosed, with the goal of equating and maximizing the communication distances between devices in the system, such as the external controller and the Implantable Pulse Generator (IPG). The method involves computerized simulation of maximum communication distances in both directions between the two devices while varying at least two parameters of the telemetry circuitry, such as the number of turns in the telemetry coils in the two devices. This results in a simulation output comprising a matrix in which each element comprises the bidirectional distance values. An element is determined for which the distances are equal (or nearly equal) and maximized (or nearly maximized), and the optimal values for the parameters are then chosen on that basis, with the result that the communication distance in one direction equals the communication distance in the other direction, and is maximized.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: July 5, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Md. Mizanur Rahman, Daniel Aghassian
  • Publication number: 20160136437
    Abstract: An external controller/charger system for an implantable medical device is disclosed, in which the external controller/charger system provides automatic switching between telemetry and charging without any manual intervention by the patient. The external controller/charger system includes an external controller which houses a telemetry coil and an external charging coil coupled to the external controller. Normally, a charging session is carried out using the external charging coil, and a telemetry session is carried out using the telemetry coil. However, when a patient requests to carry out telemetry during a charging session, the external charging coil is used instead of the internal telemetry coil.
    Type: Application
    Filed: January 19, 2016
    Publication date: May 19, 2016
    Inventor: Daniel Aghassian
  • Publication number: 20160126771
    Abstract: An integrated external controller/charger system for an implantable medical device is disclosed comprising an external controller/charger device with a Graphical User Interface (GUI) and first battery, and an external charging coil assembly coupleable to the external controller/charger device and including or associated with a second battery. The second battery is used to energize a charging coil in the external charging coil assembly, while the first battery is used to power other aspects of the system (data telemetry circuitry, control circuitry, the GUI, etc.). Because the second battery powers the relatively high-power charging function, the first battery in the external controller/charger device can be made smaller. Additionally, the second battery enables a suitable external controller device (e.g. a mobile device such as a cell phone) to provide charging functionality even if its first battery is otherwise inadequate.
    Type: Application
    Filed: August 13, 2015
    Publication date: May 5, 2016
    Inventors: Daniel Aghassian, Terril G. Lewis
  • Publication number: 20160114173
    Abstract: Electrical energy is transcutaneously transmitted at a plurality of different frequencies to an implanted medical device. The magnitude of the transmitted electrical energy respectively measured at the plurality of frequencies. One of the frequencies is selected based on the measured magnitude of the electrical energy (e.g., the frequency at which the measured magnitude of the electrical energy is the greatest). A depth level at which the medical device is implanted within the patient is determined based on the selected frequency. For example, the depth level may be determined to be relatively shallow if the selected frequency is relatively high, and relatively deep if the selected frequency is relative low. A charge strength threshold at which a charge strength indicator generates a user-discernible signal can then be set based on the determined depth level.
    Type: Application
    Filed: January 4, 2016
    Publication date: April 28, 2016
    Inventors: Daniel Aghassian, Lev Freidin, Joey Chen
  • Publication number: 20160114178
    Abstract: An improved external trial stimulator provides neurostimulation functionality for implanted medical electrodes prior to implantation of an implantable neurostimulator. The external trial stimulator is housed in a four-part housing that provides mechanical and electrostatic discharge protection for the electronics mounted in a central frame of the housing. Connectors attached to leads from the electrodes connect to contacts that are recessed in the housing through ports that are centered for easy access. Multiple indicators provide information to users of the external trial stimulator.
    Type: Application
    Filed: January 8, 2016
    Publication date: April 28, 2016
    Inventors: Daniel Aghassian, Robert G. Lamont, Robert J. Stinauer
  • Patent number: 9314642
    Abstract: The disclosed system for providing closed loop charging between an external charger and an implantable medical device such as an IPG involves the use of reflected impedance modulation, i.e., by measuring at the external charger reflections arising from modulating the impedance of the charging coil in the IPG. During charging, the charging coil in the IPG is periodically pulsed to modulate its impedance. The magnitude of the change in the coil voltage produced at the external charger ?V as a result of these pulses is assessed and is used by the controller circuitry in the external charger as indicative of the coupling between the external charger and the IPG. The external charger adjusts its output power (e.g., Icharge) in accordance with the magnitude of ?V, thus achieving closed loop charging without the need of telemetering coupling parameters from the IPG.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: April 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert Ozawa, Daniel Aghassian
  • Publication number: 20160096028
    Abstract: Disclosed in an improved medical implantable device system including an improved external charger that is able to communicate with an external controller and IPG using the communication protocol (e.g., FSK) used to implement communications between the external controller and the implant. The external controller as modified uses its charging coil to charge the implant, and also to communicate with the other devices in the system. As such, the external charger is provided with transceiver circuitry operating in accordance with the protocol, and also includes tuning circuitry to tune the coil as necessary for communications or charging. Communication or charging access to the charging coil in the external charger is time multiplexed. The disclosed system allows charging information to be provided to the user interface of the external controller so that it can be reviewed by the user, who may take corrective action if necessary.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 7, 2016
    Inventor: Daniel Aghassian
  • Publication number: 20160082260
    Abstract: An improved architecture for an implantable medical device such as an implantable pulse generator (IPG) is disclosed. In one embodiment, the various functional blocks for the IPG are incorporated into a signal integrated circuit (IC). Each of the functional blocks communicates with each other, and with other off-chip devices if necessary, via a centralized bus governed by a communication protocol. To communicate with the bus and to adhere to the protocol, each circuit block includes bus interface circuitry adherent with that protocol. Because each block complies with the protocol, any given block can easily be modified or upgraded without affecting the design of the other blocks, facilitating debugging and upgrading of the IPG circuitry. Moreover, because the centralized bus can be taken off the integrated circuit, extra circuitry can easily be added off chip to modify or add functionality to the IPG.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Inventors: Paul J. Griffith, Jordi Parramon, Goran Marnfeldt, Daniel Aghassian, Kiran Nimmagadda, Emanuel Feldman, Jess W. Shi
  • Patent number: 9272156
    Abstract: An external controller/charger system for an implantable medical device is disclosed, in which the external controller/charger system provides automatic switching between telemetry and charging without any manual intervention by the patient. The external controller/charger system includes an external controller which houses a telemetry coil and an external charging coil coupled to the external controller. Normally, a charging session is carried out using the external charging coil, and a telemetry session is carried out using the telemetry coil. However, when a patient requests to carry out telemetry during a charging session, the external charging coil is used instead of the internal telemetry coil.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: March 1, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian
  • Patent number: 9259574
    Abstract: An improved external trial stimulator provides neurostimulation functionality for implanted medical electrodes prior to implantation of an implantable neurostimulator. The external trial stimulator is housed in a four-part housing that provides mechanical and electrostatic discharge protection for the electronics mounted in a central frame of the housing. Connectors attached to leads from the electrodes connect to contacts that are recessed in the housing through ports that are centered for easy access. Multiple indicators provide information to users of the external trial stimulator.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: February 16, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Robert G. Lamont, Robert J. Stinauer
  • Publication number: 20160030754
    Abstract: An external charger for an implantable medical device is disclosed which can automatically detect an implant and generate a charging field. The technique uses circuitry typically present in an external charger, such as control circuitry, a Load Shift Keying (LSK) demodulator, and a coupling detector. An algorithm in the control circuitry periodically issues charging fields of short duration in a standby mode. If the coupling detector detects the presence of a conductive material, the algorithm issues a listening window during which a charging field is generated. If an LSK reply signal is received at the LSK demodulator, the external charger can charge the implant in a normal fashion. If a movement signature is detected at the LSK demodulator indicative of a predetermined user movement of the external charger, a charging field is issued for a set timing period, to at least partially charge the IPG battery to restore LSK communications.
    Type: Application
    Filed: October 12, 2015
    Publication date: February 4, 2016
    Inventor: Daniel Aghassian
  • Publication number: 20160023007
    Abstract: An improved implantable medical device system having dual coils in one of the devices in the system is disclosed. The dual coils are used preferably in an external device such as an external controller or an external charger. The dual coils are wrapped around axes that are preferably orthogonal, although other non-zero angles could be used as well. When used to transmit, the two coils are driven (for example, with FSK-modulated data when the transmitting data) out of phase, preferably at 90 degrees out of phase. This produces a magnetic field which rotates, and which reduces nulls in the coupling between the external device and the receiving coil within the implanted device. Moreover, implementation of the dual coils to transmit requires no change in the receiver circuitry of the implanted device. Should the device with dual coils also receive transmissions from the other device (e.g.
    Type: Application
    Filed: October 7, 2015
    Publication date: January 28, 2016
    Inventors: Thomas W. Stouffer, Lev Freidin, Daniel Aghassian
  • Patent number: 9227075
    Abstract: Electrical energy is transcutaneously transmitted at a plurality of different frequencies to an implanted medical device. The magnitude of the transmitted electrical energy respectively measured at the plurality of frequencies. One of the frequencies is selected based on the measured magnitude of the electrical energy (e.g., the frequency at which the measured magnitude of the electrical energy is the greatest). A depth level at which the medical device is implanted within the patient is determined based on the selected frequency. For example, the depth level may be determined to be relatively shallow if the selected frequency is relatively high, and relatively deep if the selected frequency is relative low. A charge strength threshold at which a charge strength indicator generates a user-discernible signal can then be set based on the determined depth level.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: January 5, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Lev Freidin, Joey Chen
  • Patent number: 9211418
    Abstract: An improved external charger for an implantable medical device is disclosed in which charging is at least partially controlled based on a determined position of the external charger, which position may be indicative of the pressure between the external charger and a patient's tissue. The improved external charger includes one or more position determination elements, e.g., an accelerometer or gyrometer, and control circuitry for controlling the external device in accordance with the determined position. The determined position of the external charger can be used to control charging, for example, by suspending charging, by adjusting the intensity of charging, by adjusting a maximum set point temperature for the external charger, or issuing an alert via a suitable user interface. By so controlling the external charger on the basis of the determined position, the external charger is less likely to create potentially problematic or uncomfortable conditions for the user.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: December 15, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian