Patents by Inventor Daniel Aghassian

Daniel Aghassian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150182754
    Abstract: A communications bridge device communicates between a consumer electronics device, such as a smart telephone, and an implantable medical device. The bridge forwards instructions and data between the consumer electronics device and the implantable medical device. The bridge contains a first transceiver that operates according to a communication protocol operating in the consumer electronics device (such as Bluetooth®), and second transceiver that operates according to a communications technique operating in the implantable medical device (e.g., Frequency Shift Keying). A software application is installed on the consumer electronics device, which provides a user interface for controlling and reading the implantable medical device. The software application is downloadable using standard cellular means. The bridge is preferably small, and easily and discreetly carried by the implantable medical device patient.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 2, 2015
    Inventors: Samuel Tahmasian, Daniel Aghassian, Douglas Michael Ackermann, Joonho Hyun, Dennis Ralph Zottola
  • Publication number: 20150157861
    Abstract: An improved circuit board for an implantable stimulator device is disclosed having components embedded within the device's circuit board, and in particular having embedded components in the electrodes current paths, such as various numbers and/or combinations of DC-blocking capacitors, EMI filtering capacitors, and EMI filtering inductors. By embedding at least some of these components, the improved circuit board can accommodate additional IPG circuitry, or can be made smaller, which is significant given the trend to increase the number of electrodes in such devices. In a preferred embodiment, at least the filtering capacitors are embedded in the circuit board, while the DC-blocking capacitors are traditionally surface mounted, without reducing the number of DC-blocking capacitors compared to the number of electrodes the IPG supports.
    Type: Application
    Filed: November 10, 2014
    Publication date: June 11, 2015
    Inventor: Daniel Aghassian
  • Patent number: 9044617
    Abstract: By incorporating magnetic field-inducing position determination coils (PDCs) in an external charger, it is possible to determine the position of an implantable device by actively inducing magnetic fields using the PDCs and sensing the reflected magnetic field from the implant. In one embodiment, the PDCs are driven by an AC power source with a frequency equal to the charging coil. In another embodiment, the PDCs are driven by an AC power source at a frequency different from that of the charging coil. By comparing the relative reflected magnetic field strengths at each of the PDCs, the position of the implant relative to the external charger can be determined. Audio and/or visual feedback can then be communicated to the patient to allow the patient to improve the alignment of the charger.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: June 2, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian
  • Patent number: 9030159
    Abstract: To recharge an implanted medical device, an external device, typically in the form of an inductive charger, is placed over the implant to provide for transcutaneous energy transfer. The external charging device can be powered by a rechargeable battery. Since the battery is in close proximity to the charge coil, the large magnetic field produced by the charge coil induces eddy currents that flow on the battery's metallic case, often resulting in undesirable heating of the battery and reduced efficiency of the charger. This disclosure provides a means of shielding the battery from the magnetic field to reduce eddy current heating, thereby increasing efficiency. In one embodiment, the magnetic shield consists of one or more thin ferrite plates. The use of a ferrite shield allows the battery to be placed directly over the charge coil as opposed to outside the extent of the charge coil.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: May 12, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joey Chen, Robert Ozawa, Daniel Aghassian
  • Patent number: 9031665
    Abstract: An external controller/charger system for an implantable medical device is disclosed, in which the external controller/charger system provides automatic switching between telemetry and charging without any manual intervention by the patient. The external controller/charger system includes an external controller which houses a telemetry coil and an external charging coil coupled to the external controller. Normally, a charging session is carried out using the external charging coil, and a telemetry session is carried out using the telemetry coil. However, when a patient requests to carry out telemetry during a charging session, the external charging coil is used instead of the internal telemetry coil.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: May 12, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian
  • Patent number: 9026220
    Abstract: An external charger system is disclosed comprising an external charger with an internal charging coil, as well as an output port coupleable to one of a plurality of types of external accessory charging coils of varying shapes and sizes. If the internal charging coil of the external charger is sufficient for a given patient's charging needs, the accessory charging coils may be detached from the external charger, and the external charger may serve as a standalone self-contained external charger. The external charger can automatically detect which of the plurality of types of accessory charging coils is connected, and can adjust its operation accordingly. This versatile design allows the external charger system to be used by large numbers of patients, even if their particular implant charging scenarios are different.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 5, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Bob Ozawa, Joonho Hyun
  • Patent number: 9020602
    Abstract: An improved embodiment of an external device for an implantable medical device system is described herein, where the external device has both circuitry for charging the implantable medical device and circuitry for telemetering data to and from the medical implant contained within a single housing. The external device in one embodiment includes orthogonal radiators in which both the radiators are used for data transfer, and in which at least one of the radiators is used for power transfer. Having charging and data telemetry circuitry fully integrated within a single external device conveniences both patient and clinician.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: April 28, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian
  • Publication number: 20150054459
    Abstract: An external charging system for charging or powering an implantable medical device is disclosed which is self-affixing to the patient without the need for a holding device. The charging system can comprise a charging coil attached to a flexible member. The flexible member is bendable, and when bent will firmly hold its position on the patient. The system can include an electronics module including a user interface and the necessary electronics for activating the charging coil to produce a magnetic charging field. Wires can couple the charging coil in the coil module to the electronics in the electronics modules. The entire assembly can be encased in a water proof sleeve having a high-friction surface, which protects the charging system and helps the charging system to adhere to the patient.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: Mun Pook Lui, Daniel Aghassian
  • Patent number: 8933944
    Abstract: An improved external controller with dual microcontrollers useable with an implantable medical device is disclosed. The external controller comprises a low speed (low frequency) microcontroller and a high speed (high frequency) microcontroller. The low speed microcontroller receives telemetry data from the medical device, converts data into graphical commands, and transmits commands to the high speed microcontroller. The high speed microcontroller interprets the graphical commands, retrieves images indicative of the commands from a storage device, and renders the images onto a display screen. The high speed microcontroller may also process more complicated data sent from the low speed microcontroller, and return the results to the low speed microcontroller to allow it to form the graphics command for the high speed microcontroller to execute.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: January 13, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Thomas Stouffer, Vuong Nguyen
  • Publication number: 20140354211
    Abstract: Disclosed are an external charger including a solar cell array for charging or powering an implantable medical device (IMD), and a cradle including a solar cell array for charging or powering an external charger for charging or powering an implantable medical device. The disclosed improved external charger or improved cradle are particularly beneficial for charging a battery in an external charger used to charge or power an IMD when a power source is otherwise unavailable, such as a wall socket.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 4, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis Zottola, Daniel Aghassian
  • Patent number: 8886333
    Abstract: An external charging system for charging or powering an implantable medical device is disclosed which is self-affixing to the patient without the need for a holding device. The charging system can comprise two modules attached to opposite ends of a flexible member. The flexible member is bendable, and when bent will firmly hold its position on the patient. The two modules can comprise a coil module containing a charging coil, and an electronics module including a user interface and the necessary electronics for activating the charging coil to produce a magnetic charging field. Wires can couple the charging coil in the coil module to the electronics in the electronics modules. The entire assembly can be encased in a water proof sleeve having a high-friction surface, which protects the charging system and helps the charging system to adhere to the patient.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: November 11, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Mun Pook Lui, Daniel Aghassian
  • Publication number: 20140324127
    Abstract: A combination charging and telemetry circuit for use within an implantable device, such as a microstimulator, uses a single coil for both charging and telemetry. In accordance with one aspect of the invention, one or more capacitors are used to tune the single coil to different frequencies, wherein the coil is used for multiple purposes, e.g., for receiving power from an external source and also for the telemetry of information to and from an external source.
    Type: Application
    Filed: July 9, 2014
    Publication date: October 30, 2014
    Inventors: Daniel Aghassian, Jordi Parramon, Joey Chen
  • Patent number: 8792990
    Abstract: An improved external charger for charging the battery within or providing power to an implantable medical device is disclosed. The improved external charger includes circuitry for detecting the temperature of the external charger and for controlling charging to prevent exceeding a maximum temperature. The external charger in some embodiments includes a user interface for allowing a patient to set the external charger's maximum temperature. The user interface can be used to select either constant maximum temperatures, or can allow the user to choose from a number of stored charging programs, which programs can control the maximum temperature to vary over time. Alternatively, a charging program in the external charger can vary the maximum temperature set point automatically. By controlling the maximum temperature of the external charger during charging in these manners, the time needed to charge can be minimized while still ensuring a temperature that is comfortable for that patient.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: July 29, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian
  • Publication number: 20140197786
    Abstract: An external charger system is disclosed comprising an external charger with an internal charging coil, as well as an output port coupleable to one of a plurality of types of external accessory charging coils of varying shapes and sizes. If the internal charging coil of the external charger is sufficient for a given patient's charging needs, the accessory charging coils may be detached from the external charger, and the external charger may serve as a standalone self-contained external charger. The external charger can automatically detect which of the plurality of types of accessory charging coils is connected, and can adjust its operation accordingly. This versatile design allows the external charger system to be used by large numbers of patients, even if their particular implant charging scenarios are different.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Bob Ozawa, Joonho Hyun
  • Patent number: 8781596
    Abstract: A combination charging and telemetry circuit for use within an implantable device, such as a microstimulator, uses a single coil for both charging and telemetry. In accordance with one aspect of the invention, one or more capacitors are used to tune the single coil to different frequencies, wherein the coil is used for multiple purposes, e.g., for receiving power from an external source and also for the telemetry of information to and from an external source.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 15, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Jordi Parramon, Joey Chen
  • Patent number: 8755900
    Abstract: An improved external charger for an implantable medical device is disclosed in which charging is at least partially controlled based on a sensed pressure impingent on its case, which pressure is indicative of the pressure between the external charger and a patient's tissue. The improved external charger includes pressure detection circuitry coupled to one or more pressure sensors for controlling the external device in accordance with the sensed impingent pressure. The sensed pressure can be used to control charging, for example, by suspending charging, by adjusting a maximum set point temperature for the external charger based on the measured pressure, or by issuing an alert via a suitable user interface. By so controlling the external charger on the basis of the measured pressure, the external charger is less likely to create potentially problematic or uncomfortable conditions for the user.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: June 17, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian
  • Publication number: 20140114373
    Abstract: An intermediate coupler is used to improve inductive coupling between an external charger and an implantable medical device having a battery requiring charging. The intermediate coupler comprises a coil (inductor) coupled to a capacitor, whose values are chosen to resonate at the frequency of the magnetic field emitted by the external charger. The intermediate coupler preferably contains no power source such as a battery, and can operate passively. When the intermediate coupler receives the magnetic field from the external charger, a current is induced in its coil, and the intermediate coupler generates its own magnetic field which is captured by the implantable medical device and used to charge its battery.
    Type: Application
    Filed: July 15, 2013
    Publication date: April 24, 2014
    Inventor: Daniel Aghassian
  • Patent number: 8694117
    Abstract: By incorporating magnetic field sensing coils in an external charger, it is possible to determine the position of an implantable device by sensing the reflected magnetic field from the implant. In one embodiment, two or more field sensing coils are arranged to sense the reflected magnetic field. By comparing the relative reflected magnetic field strengths of the sensing coils, the position of the implant relative to the external charger can be determined. Audio and/or visual feedback can then be communicated to the patient to allow the patient to improve the alignment of the charger.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: April 8, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Lev Freidin, Joey Chen
  • Patent number: 8688217
    Abstract: An implantable pulse generator or external trial stimulator for coupling to a lead with a distal end and a proximal end, the lead comprising at least one terminal disposed at the proximal end. The implantable pulse generator comprises a connector for receiving the proximal end of the lead, the connector having at least one contact, and a sensor configured and arranged for detecting electrical connectivity between the implantable pulse generator or external trial stimulator and the lead, the sensor comprising at least one sensor contact, the sensor contact being configured and arranged for electrically coupling to a terminal of the lead and at least one of the contacts of the connector when the lead is fully inserted in the connector and thereby detecting electrical connectivity between the implantable pulse generator or external trial stimulator and the lead.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: April 1, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Michael A. Moffitt, Christopher B. Gould, Marco Henry Gin, Jordi Parramon
  • Patent number: 8682444
    Abstract: An external charger system is disclosed comprising an external charger with an internal charging coil, as well as an output port coupleable to one of a plurality of types of external accessory charging coils of varying shapes and sizes. If the internal charging coil of the external charger is sufficient for a given patient's charging needs, the accessory charging coils may be detached from the external charger, and the external charger may serve as a standalone self-contained external charger. The external charger can automatically detect which of the plurality of types of accessory charging coils is connected, and can adjust its operation accordingly. This versatile design allows the external charger system to be used by large numbers of patients, even if their particular implant charging scenarios are different.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: March 25, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Daniel Aghassian, Bob Ozawa, Joonho Hyun