Patents by Inventor Daniel Aronov
Daniel Aronov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250260069Abstract: A device that includes an electrochemical cell that includes a rigid housing, electrodes that comprises an anode, a cathode, and an adjustable pressure element configured to assert a controlled pressure on at least one of the electrodes. The controlled pressure is set to a first value during a first point in time and is set to a second value during a second point in time. The electrodes and the adjustable pressure element are located within the rigid housing.Type: ApplicationFiled: February 14, 2024Publication date: August 14, 2025Applicant: STOREDOT LTD.Inventors: Daniel ARONOV, David Elmakias
-
Patent number: 12374759Abstract: Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode having a conductive current collector coated with a composite containing a carbon-based material, a cathode configured as a source of Li ions, an electrolyte capable of carrying Li-ions between the anode and the cathode, and a separator between the anode and the cathode, the separator having a thickness of less than 20 microns. Methods of charging the rechargeable battery cells are also disclosed.Type: GrantFiled: March 13, 2024Date of Patent: July 29, 2025Assignee: StoreDot, Ltd.Inventors: Daniel Aronov, Nir Kedem, Yaron Ideses, Dan Corfas, Assaf Zehavi, Zvi Ioffe
-
Patent number: 12261324Abstract: Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode having at least one surface with a reversible areal capacity, after formation, up to 8.0 mAh/cm2, and a cathode having at least one surface with a reversible areal capacity, after formation, up to 6 mAh/cm2, wherein a ratio of areal capacity of the at least one surface of the anode to the at least one surface of the cathode is between 1.15 to 1.45. Methods of charging rechargeable battery cells disclosed herein under conditions sufficient to enable charging of at least 70% of usable capacity to the rechargeable battery cell within 15 minutes, are also disclosed.Type: GrantFiled: March 13, 2024Date of Patent: March 25, 2025Assignee: StoreDot, Ltd.Inventors: Daniel Aronov, Nir Kedem, Yaron Idesis, Dan Corfas, Assaf Zehavi, Zvi Ioffe
-
Publication number: 20250007121Abstract: An electrochemical cell that includes (i) a cathode tabs electrical coupler; (ii) an anode tabs electrical coupler; and (iii) a stack that is rolled about an axis, wherein the stack includes multiple instances of: (a) a cathode sheet; (b) a cathode tab that extends from the cathode sheet at a first direction; (c) an anode sheet, (e) an anode tab that extends from the anode sheet at a second direction, the second direction differs from the first direction; and (f) one or more separator sheets. Multiple cathode tabs of the multiple instances are coupled in parallel to each other by the cathode tabs electrical coupler. Multiple anode tabs of the multiple instances are coupled in parallel to each other by the anode tabs electrical coupler.Type: ApplicationFiled: June 29, 2023Publication date: January 2, 2025Applicant: STOREDOT LTD.Inventors: Nir DOLEV, Daniel ARONOV
-
Patent number: 12142724Abstract: A multi-electrolyte battery, that may include an anode, a cathode, a solid electrolyte positioned between the anode and the cathode, current carriers that comprises an anode current carrier and a cathode current carrier; and at least one other electrolyte. The anode current carrier and the cathode current carrier comprise two external portions that extends outside the anode. The solid electrolyte is sealingly coupled to the two external portions of at least one of the current carriers to define at least one sealed electrolyte, the at least one sealed electrolyte belongs to the at least one other electrolyte.Type: GrantFiled: April 28, 2021Date of Patent: November 12, 2024Assignee: STOREDOT LTD.Inventors: Daniel Aronov, Assaf Zehavi, Eran Sella
-
Publication number: 20240322272Abstract: Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode containing a Si—C composite within a porous structure, a metal oxide-based cathode configured as a source of Li ions, an electrolyte capable of carrying Li-ions between the anode and the cathode, and a separator between the anode and the cathode. The rechargeable battery may have an interface between the anode and the cathode that is pressurized in an amount sufficient to manage volumetric changes during charging and discharging processes.Type: ApplicationFiled: March 13, 2024Publication date: September 26, 2024Inventors: Daniel Aronov, Nir Kedem, Yaron Idesis, Dan Corfas, Assaf Zehavi, Zvi Ioffe
-
Publication number: 20240313196Abstract: Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode having at least one surface with a reversible areal capacity, after formation, up to 8.0 mAh/cm2, containing a Si—C composite within a porous structure and including a carbon-based conductive additive, wherein the Si—C composite is at least 30% Si by weight, and the material is at least 85% Si—C composite. The rechargeable battery cell may also include a cathode having at least one surface with a reversible areal capacity, after formation, up to 6 mAh/cm2, wherein a ratio of areal capacity of the at least one surface of the anode to the at least one surface of the cathode is between 1.15 to 1.45.Type: ApplicationFiled: March 13, 2024Publication date: September 19, 2024Inventors: Daniel Aronov, Nir Kedem, Yaron Idesis, Dan Corfas, Assaf Zehavi, Zvi Ioffe
-
Publication number: 20240308376Abstract: A method for high-throughput charging of fast charging electrical vehicles (FCEVs), the method may include: (a) obtaining information about optimal charging patterns (CP) of a set of FCEVs that exhibit a charging rate that exceeds two C; (b) determining a set of actual CPs for charging the set of the FCEVs in an at least partially overlapping manner, wherein an actual CP of a given FCEV of the set of the FCEVs is a residual CP that (i) is determined based on a CP of another FCEV of the set of FCEVs, and (ii) significantly differs from an optimal CP of the given FCEV; wherein the CP of the other FCEV is selected out of an optimal CP of the other FCEV and an actual CP of the other FCEV; and (c) executing at least a part of the charging, by a charging system, of the set of the FCEVs in the at least partially overlapping manner.Type: ApplicationFiled: May 8, 2023Publication date: September 19, 2024Applicant: STOREDOT LTD.Inventors: Daniel ARONOV, Doron Myersdorf
-
Publication number: 20240313358Abstract: Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode having a conductive current collector coated with a composite containing a carbon-based material, a cathode configured as a source of Li ions, an electrolyte capable of carrying Li-ions between the anode and the cathode, and a separator between the anode and the cathode, the separator having a thickness of less than 20 microns. Methods of charging the rechargeable battery cells are also disclosed.Type: ApplicationFiled: March 13, 2024Publication date: September 19, 2024Inventors: Daniel Aronov, Nir Kedem, Yaron Idesis, Dan Corfas, Assaf Zehavi, Zvi Ioffe
-
Publication number: 20240313357Abstract: Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode having a conductive current collector coated with a composite containing at least 30% Si by weight, a cathode configured as a source of Li ions, an electrolyte capable of carrying Li-ions between the anode and the cathode, and a separator between the anode and the cathode, the separator having a porosity of at least 38%. Methods of charging such rechargeable battery cells are also disclosed.Type: ApplicationFiled: March 13, 2024Publication date: September 19, 2024Inventors: Daniel Aronov, Nir Kedem, Yaron Idesis, Dan Corfas, Assaf Zehavi, Zvi Ioffe
-
Publication number: 20240313273Abstract: Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode having at least one surface with a reversible areal capacity, after formation, up to 8.0 mAh/cm2, and a cathode having at least one surface with a reversible areal capacity, after formation, up to 6 mAh/cm2, wherein a ratio of areal capacity of the at least one surface of the anode to the at least one surface of the cathode is between 1.15 to 1.45. Methods of charging rechargeable battery cells disclosed herein under conditions sufficient to enable charging of at least 70% of usable capacity to the rechargeable battery cell within 15 minutes, are also disclosed.Type: ApplicationFiled: March 13, 2024Publication date: September 19, 2024Inventors: Daniel Aronov, Nir Kedem, Yaron Idesis, Dan Corfas, Assaf Zehavi, Zvi Ioffe
-
Patent number: 11936035Abstract: Core-shell particles, composite anode material, anodes made therefrom, lithium ion cells and methods are provided, which enable production of fast charging lithium ion batteries. The composite anode material has core-shell particles which are configured to receive and release lithium ions at their cores and to have shells that are configured to allow for core expansion upon lithiation. The cores of the core-shell particles are connected to the respective shells by conductive material such as carbon fibers, which may form a network throughout the anode material and possibly interconnect cores of many core-shell particles to enhance the electrical conductivity of the anode. Ionic conductive material and possibly mechanical elements may be incorporated in the core-shell particles to enhance ionic conductivity and mechanical robustness toward expansion and contraction of the cores during lithiation and de-lithiation.Type: GrantFiled: December 25, 2017Date of Patent: March 19, 2024Assignee: STOREDOT LTD.Inventors: David Jacob, Sergey Remizov, Nitzan Shadmi, Hani Farran, Daniel Aronov
-
Patent number: 11916226Abstract: Anodes for lithium-ion batteries and methods for their production are provided. Anodes comprise an initial anode made of consolidated anode material particles, and a coating of the initial anode, that comprises a layer of an ionic-conductive polymer which provides an artificial SEI (solid-electrolyte interphase) to facilitate lithium ion transfer through the coating while preventing direct fluid communication with the anode material particles and electrolyte contact thereto. The coating may be configured to keep the anode resistance low while preventing electrolyte decomposition thereupon, enhancing cell stability and cycling lifetime.Type: GrantFiled: July 6, 2020Date of Patent: February 27, 2024Assignee: STOREDOT LTD.Inventors: Eran Sella, Nitzam Shadmi, Ohad Goldbart, Daniel Aronov
-
Patent number: 11831012Abstract: Methods, anode material particles, mixtures, anodes and lithium-ion batteries are provided, having passivated silicon-based particles that enable processing in oxidizing environments such as water-based slurries. Methods comprise forming a mixture of silicon particles with nanoparticles (NPs) and a carbon-based binders and/or surfactants, wherein the NPs comprise at least one of: metalloid oxide NPs, metalloid salt NPs and carbon NPs, reducing the mixture to yield a reduced mixture comprising coated silicon particles with a coating providing a passivation layer (possibly amorphous), and consolidating the reduced mixture to form an anode. It is suggested that the NPs provide nucleation sites for the passivation layer on the surface of the silicon particles—enabling significant anode-formation process simplifications such as using water-based slurries—enabled by disclosed methods and anode active material particles.Type: GrantFiled: April 25, 2019Date of Patent: November 28, 2023Assignee: STOREDOT LTD.Inventors: Ohad Goldbart, Nitzan Shadmi, Hani Farran, Daniel Aronov
-
Patent number: 11658279Abstract: Prelithiation methods and fast charging lithium ion cell are provided, which combine high energy density and high power density. Several structural and chemical modifications are disclosed to enable combination of features that achieve both goals simultaneously in fast charging cells having long cycling lifetime. The cells have anodes with high content of Si, Ge and/or Sn as principal anode material, and cathodes providing a relatively low C/A ratio, with the anodes being prelithiated to have a high lithium content, provided by a prelithiation algorithm. Disclosed algorithms determine lithium content achieved through prelithiation by optimizing the electrolyte to increase cycling lifetime, adjusting energy density with respect to other cell parameters, and possibly reducing the C/A ratio to maintain the required cycling lifetime.Type: GrantFiled: January 7, 2020Date of Patent: May 23, 2023Assignee: STOREDOT LTD.Inventors: Ivgeni Shterenberg, Eran Sella, Eynat Matzner, Shirel Cohen, Hadar Mazor Shafir, Daniel Aronov
-
Patent number: 11652200Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.Type: GrantFiled: January 7, 2020Date of Patent: May 16, 2023Assignee: STOREDOT LTD.Inventors: Shaked Rosenne, Ron Paz, Nir Kedem, Doron Burshtain, Nir Baram, Nir Pour, Daniel Aronov
-
Patent number: 11569499Abstract: Electrodes, production methods and mono-cell batteries are provided, which comprise active material particles embedded in electrically conductive metallic porous structure, dry-etched anode structures and battery structures with thick anodes and cathodes that have spatially uniform resistance. The metallic porous structure provides electric conductivity, a large volume that supports good ionic conductivity, that in turn reduces directional elongation of the particles during operation, and may enable reduction or removal of binders, conductive additives and/or current collectors to yield electrodes with higher structural stability, lower resistance, possibly higher energy density and longer cycling lifetime. Dry etching treatments may be used to reduce oxidized surfaces of the active material particles, thereby simplifying production methods and enhancing porosity and ionic conductivity of the electrodes.Type: GrantFiled: November 27, 2019Date of Patent: January 31, 2023Assignee: STOREDOT LTD.Inventors: Eran Sella, Ohad Goldbart, Daniel Aronov
-
Patent number: 11560062Abstract: Single, internally adjustable modular battery systems are provided, for handling power delivery from and to various power systems such as electric vehicles, photovoltaic systems, solar systems, grid-scale battery energy storage systems, home energy storage systems and power walls. Batteries comprise a main fast-charging lithium ion battery (FC), configured to deliver power to the electric vehicle, a supercapacitor-emulating fast-charging lithium ion battery (SCeFC), configured to receive power and deliver power to the FC and/or to the EV and to operate at high rates within a limited operation range of state of charge (SoC), respective module management systems, and a control unit. Both the FC and the SCeFC have anodes based on the same anode active material and the control unit is configured to manage the FC and the SCeFC and manage power delivery to and from the power system(s), to optimize the operation of the FC.Type: GrantFiled: September 24, 2019Date of Patent: January 24, 2023Assignee: STOREDOT LTD.Inventor: Daniel Aronov
-
Patent number: 11495835Abstract: Methods and systems are provided for optimizing usage of a large number of battery cells, some, most or all of which are fast charging cells, and possibly arranged in battery modules—e.g., for operating an electric vehicle power train. Methods comprise deriving an operation profile for the battery cells/modules for a specified operation scenario and specified optimization parameters, operating the battery cells/modules according to the derived operation profile, and monitoring the operation of the battery cells/modules and adjusting the operation profile correspondingly. Systems may be configured to balance cell/module parameters among modules, to have parallel supplemental modules and/or serial supplementary cells in the modules, and/or have supplemental modules and circuits configured to store excessive charging energy for cells groups and/or modules—to increase the cycling lifetime and possibly the efficiency of the systems. Disclosed redundancy management improves battery performance and lifetime.Type: GrantFiled: March 6, 2019Date of Patent: November 8, 2022Assignee: STOREDOT LTD.Inventors: Daniel Aronov, Avraham Edelshtein, Simon Litsyn
-
Publication number: 20220123574Abstract: A charging system that may include a booster unit; a main charging unit that has a charging capability and is configured to use, during a first charging phase, a first part of the charging capacity for charging battery cells by providing a high-C charging current of at least 4 C. The main charging unit is further configured to use a second part of the charging capacity, during the first charging phase, to charge the booster unit. The first part of the charging capacity is limited by a first charging current limitation of the battery cells.Type: ApplicationFiled: October 26, 2021Publication date: April 21, 2022Applicant: STOREDOT LTD.Inventors: Zvi Ioffe, Dan Corfas, Daniel Aronov