Patents by Inventor Daniel Aronov

Daniel Aronov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190207270
    Abstract: Electrolytes, anode material particles and methods are provided for improving performance and enhancing the safety of lithium ion batteries. Electrolytes may comprise ionic liquid(s) as additives which protect the anode material particles and possibly bind thereto; and/or may comprise a large portion of fluoroethylene carbonate (FEC) and/or vinylene carbonate (VC) as the cyclic carbonate component, and possibly ethyl acetate (EA) and/or ethyl methyl carbonate (EMC) as the linear component; and/or may comprise composite electrolytes having solid electrolyte particles coated by flexible ionic conductive material. Ionic liquid may be used to pre-lithiate in situ the anode material particles. Disclosed electrolytes improve lithium ion conductivity, prevent electrolyte decomposition and/or prevents lithium metallization on the surface of the anode.
    Type: Application
    Filed: February 6, 2019
    Publication date: July 4, 2019
    Applicant: StoreDot Ltd.
    Inventors: Doron BURSHTAIN, Daniel ARONOV, Eran SELLA
  • Publication number: 20190189999
    Abstract: Methods, stacks and electrochemical cells are provided, in which the cell separator is surface-treated prior to attachment to the electrode(s) to form binding sites on the cell separator and enhance binding thereof to the electrode(s), e.g., electrostatically. The cell separator(s) may be attached to the electrode(s) by cold press lamination, wherein the created binding sites are configured to stabilize the cold press lamination electrostatically—forming flexible and durable electrode stacks. Electrode slurry may be deposited on a sacrificial film and then attached to current collector films, avoiding unwanted interactions between materials and in particular solvents involved in the respective slurries. Dried electrode slurry layers may be pressed or calendared against each other to yield thinner, smother and more controllably porous electrodes, as well as higher throughput. The produced stacks may be used in electrochemical cells and in any other type of energy storage device.
    Type: Application
    Filed: January 2, 2019
    Publication date: June 20, 2019
    Applicant: StoreDot Ltd.
    Inventors: Ron PAZ, Yaniv Damtov, Daniel Aronov
  • Patent number: 10312504
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: June 4, 2019
    Assignee: StoreDot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov
  • Publication number: 20190165592
    Abstract: The present invention discloses devices and methods for adaptive fast-charging of mobile devices. Methods include the steps of: firstly determining whether a first connected component is charged; upon firstly determining the first connected component isn't charged, secondly determining whether the first connected component is adapted for rapid charging; and upon secondly determining the first connected component is adapted for rapid charging, firstly charging the first connected component at a high charging rate via a charging device. Preferably, the charging device is selected from the group consisting of: a rapid charger and a slave battery. Preferably, the first connected component is selected from the group consisting of: a mobile device and a slave battery. Preferably, the high charging rate is selected from the group consisting of: greater than about 4 C, greater than about 5 C, greater than about 10 C, greater than about 20 C, greater than about 30 C, and greater than about 60 C.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Applicant: StoreDot Ltd.
    Inventors: Daniel ARONOV, Leonid KRASOVITSKY, Maxim LIBERMAN, Vadim SABAYEV, Leonid SPINDLER, Alan WEISLEDER
  • Publication number: 20190157669
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Application
    Filed: January 23, 2019
    Publication date: May 23, 2019
    Applicant: STOREDOT LTD.
    Inventors: Doron BURSHTAIN, Nir KEDEM, Eran SELLA, Daniel ARONOV
  • Publication number: 20190157727
    Abstract: Methods of making anode active materials include milling graphite particles with carbohydrate particles to yield graphite-carbohydrate particles, milling the particles with anode material and carbonizing to form composite anode material particles. The anode active materials thus producted are provided with an at least partially porous carbon-graphite coating with both electronic and ionic conductivity.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Applicant: StoreDot Ltd.
    Inventors: David Jacob, Sergey Remizov, Nitzan Shadmi, Hani Farran, Daniel Aronov, Boris Brudnik
  • Patent number: 10297872
    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: May 21, 2019
    Assignee: StoreDot Ltd.
    Inventors: Ron Paz, Nir Kedem, Doron Burshtain, Nir Baram, Nir Pour, Daniel Aronov
  • Patent number: 10293704
    Abstract: Electric vehicles (EVs), power trains and control units and methods are provided. Power trains comprise a main fast-charging lithium ion battery (FC), configured to deliver power to the electric vehicle, a supercapacitor-emulating fast-charging lithium ion battery (SCeFC), configured to receive power and deliver power to the FC and/or to the EV, and a control unit. Both the FC and the SCeFC have anodes based on the same anode active material, and the SCeFC is configured to operate at high rates within a limited operation range of state of charge (SoC), maintained by the control unit, which is further configured to manage the FC and the SCeFC with respect to power delivery to and from the EV, respectively, and manage power delivery from the SCeFC to the FC according to specified criteria that minimize a depth of discharge and/or a number of cycles of the FC.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: May 21, 2019
    Assignee: StoreDot Ltd.
    Inventor: Daniel Aronov
  • Publication number: 20190148784
    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
    Type: Application
    Filed: January 15, 2019
    Publication date: May 16, 2019
    Applicant: StoreDot Ltd.
    Inventors: Ron PAZ, Nir KEDEM, Doron BURSHTAIN, Nir BARAM, Nir POUR, Daniel ARONOV
  • Publication number: 20190143841
    Abstract: Single, internally adjustable modular battery systems are provided, for handling power delivery from and to various power systems such as electric vehicles, photovoltaic systems, solar systems, grid-scale battery energy storage systems, home energy storage systems and power walls. Batteries comprise a main fast-charging lithium ion battery (FC), configured to deliver power to the electric vehicle, a supercapacitor-emulating fast-charging lithium ion battery (SCeFC), configured to receive power and deliver power to the FC and/or to the EV and to operate at high rates within a limited operation range of state of charge (SoC), respective module management systems, and a control unit. Both the FC and the SCeFC have anodes based on the same anode active material and the control unit is configured to manage the FC and the SCeFC and manage power delivery to and from the power system(s), to optimize the operation of the FC.
    Type: Application
    Filed: January 16, 2019
    Publication date: May 16, 2019
    Applicant: StoreDot Ltd.
    Inventor: Daniel Aronov
  • Publication number: 20190148713
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Applicant: STOREDOT LTD.
    Inventors: Doron BURSHTAIN, Sergey REMIZOV, David JACOB, Nitzan SHADMI, Hani FARRAN, Leora SHAPIRO, Ohad GOLDBART, Boris BRUDNIK, Carmit OPHIR, Daniel ARONOV
  • Publication number: 20190148722
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Applicant: STOREDOT LTD.
    Inventors: Doron BURSHTAIN, Nir KEDEM, Daniel ARONOV
  • Patent number: 10290864
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: May 14, 2019
    Assignee: StoreDot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Eran Sella, Daniel Aronov, Hani Farran, Leora Shapiro
  • Publication number: 20190140258
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Application
    Filed: December 30, 2018
    Publication date: May 9, 2019
    Applicant: StoreDot Ltd.
    Inventors: Doron BURSHTAIN, Nir KEDEM, Daniel ARONOV
  • Patent number: 10256650
    Abstract: The present invention discloses devices and methods for adaptive fast-charging of mobile devices. Methods include the steps of: firstly determining whether a first connected component is charged; upon firstly determining the first connected component isn't charged, secondly determining whether the first connected component is adapted for rapid charging; and upon secondly determining the first connected component is adapted for rapid charging, firstly charging the first connected component at a high charging rate via a charging device. Preferably, the charging device is selected from the group consisting of: a rapid charger and a slave battery. Preferably, the first connected component is selected from the group consisting of: a mobile device and a slave battery. Preferably, the high charging rate is selected from the group consisting of: greater than about 4 C, greater than about 5 C, greater than about 10 C, greater than about 20 C, greater than about 30 C, and greater than about 60 C.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: April 9, 2019
    Assignee: STOREDOT LTD.
    Inventors: Daniel Aronov, Leonid Krasovitsky, Maxim Liberman, Vadim Sabayev, Leonid Spindler, Alan Weisleder
  • Publication number: 20190089016
    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Applicant: StoreDot Ltd.
    Inventors: Ron PAZ, Nir KEDEM, Doron BURSHTAIN, Nir BARAM, Nir POUR, Daniel ARONOV
  • Publication number: 20190089015
    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Applicant: StoreDot Ltd.
    Inventors: Ron PAZ, Nir KEDEM, Doron BURSHTAIN, Nir BARAM, Nir POUR, Daniel ARONOV
  • Publication number: 20190074704
    Abstract: Methods, systems and battery modules are provided, which increase the cycling lifetime of fast charging lithium ion batteries. During the formation process, the charging currents are adjusted to optimize the cell formation, possibly according to the characteristics of the formation process itself, and discharge extents are partial and optimized as well, as is the overall structure of the formation process. During operation, voltage ranges are initially set to be narrow, and are broadened upon battery deterioration to maximize the overall lifetime. Current adjustments are applied in operation as well, with respect to the deteriorating capacity of the battery. Various formation and operation strategies are disclosed, as basis for specific optimizations.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Applicant: StoreDot Ltd.
    Inventors: Leonid KRASOVITSKY, Vladimir SELEZNYOV, Daniel ARONOV
  • Publication number: 20190044133
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 7, 2019
    Applicant: STOREDOT LTD.
    Inventors: Doron Burshtain, Nir Kedem, Eran Sella, Daniel Aronov, Hani Farran, Leora Shapiro
  • Patent number: 10199646
    Abstract: An anode material for a lithium ion device includes an active material including silicon nanoparticles and boron carbide nanoparticles. The boron carbide nanoparticles are at least one order of magnitude smaller than the silicon nanoparticles. The weight percentage of the silicon is between about 4 to 35 weight % of the total weight of the anode material and the weight percentage of the boron carbide is between about 2.5 to about 25.6% of the total weight of the anode material. The active material may include carbon at a weight percentage of between 5 to about 60 weight % of the total weight of the anode material. Additional materials, methods of making and devices are taught.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: February 5, 2019
    Assignee: StoreDot Ltd.
    Inventors: Doron Burshtain, Liron Amir, Daniel Aronov, Olga Guchok, Leonid Krasovitsky