Patents by Inventor Daniel B. Roitman

Daniel B. Roitman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090214383
    Abstract: In one aspect, an assay test strip includes a test label that specifically binds a target analyte and a control label that is free of any specific binding affinity for the target analyte and has a different optical characteristic than the test label. In another aspect, an assay test strip includes a test label that specifically binds a target analyte and at least one non-specific-binding label that is free of any specific binding affinity for the target analyte. Systems and methods of reading assay test strips also are described.
    Type: Application
    Filed: March 24, 2009
    Publication date: August 27, 2009
    Applicant: ALVERIX, INC.
    Inventors: Patrick T. Petruno, John F. Petrilla, Michael J. Brosnan, Rong Zhou, Daniel B. Roitman
  • Publication number: 20090180926
    Abstract: An assay test strip includes a flow path, a sample receiving zone, a label, a detection zone that includes a region of interest, and at least one position marker. The at least one position marker is aligned with respect to the region of interest such that location of the at least one position marker indicates a position of the region of interest. A diagnostic test system includes a reader that obtains light intensity measurement from exposed regions of the test strip, and a data analyzer that performs at least one of (a) identifying ones of the light intensity measurements obtained from the test region based on at least one measurement obtained from the at least one reference feature, and (b) generating a control signal modifying at least one operational parameter of the reader based on at least one measurement obtained from the at least one reference feature.
    Type: Application
    Filed: March 24, 2009
    Publication date: July 16, 2009
    Applicant: ALVERIX, INC.
    Inventors: Patrick T. Petruno, John F. Petrilla, Michael J. Brosnan, Rong Zhou, Daniel B. Roitman, Bo U. Curry
  • Publication number: 20090180929
    Abstract: In one aspect, an assay test strip includes a test label that specifically binds a target analyte and a control label that is free of any specific binding affinity for the target analyte and has a different optical characteristic than the test label. In another aspect, an assay test strip includes a test label that specifically binds a target analyte and at least one non-specific-binding label that is free of any specific binding affinity for the target analyte. Systems and methods of reading assay test strips also are described.
    Type: Application
    Filed: March 24, 2009
    Publication date: July 16, 2009
    Applicant: ALVERIX, INC.
    Inventors: Patrick T. Petruno, John F. Petrilla, Michael J. Brosnan, Rong Zhou, Daniel B. Roitman
  • Publication number: 20090180925
    Abstract: An assay test strip includes a flow path, a sample receiving zone, a label, a detection zone that includes a region of interest, and at least one position marker. The at least one position marker is aligned with respect to the region of interest such that location of the at least one position marker indicates a position of the region of interest. A diagnostic test system includes a reader that obtains light intensity measurement from exposed regions of the test strip, and a data analyzer that performs at least one of (a) identifying ones of the light intensity measurements obtained from the test region based on at least one measurement obtained from the at least one reference feature, and (b) generating a control signal modifying at least one operational parameter of the reader based on at least one measurement obtained from the at least one reference feature.
    Type: Application
    Filed: March 24, 2009
    Publication date: July 16, 2009
    Applicant: ALVERIX, INC.
    Inventors: Patrick T. Petruno, John F. Petrilla, Michael J. Brosnan, Rong Zhou, Daniel B. Roitman, Bo U. Curry
  • Publication number: 20090180927
    Abstract: An assay test strip includes a flow path, a sample receiving zone, a label, a detection zone that includes a region of interest, and at least one position marker. The at least one position marker is aligned with respect to the region of interest such that location of the at least one position marker indicates a position of the region of interest. A diagnostic test system includes a reader that obtains light intensity measurement from exposed regions of the test strip, and a data analyzer that performs at least one of (a) identifying ones of the light intensity measurements obtained from the test region based on at least one measurement obtained from the at least one reference feature, and (b) generating a control signal modifying at least one operational parameter of the reader based on at least one measurement obtained from the at least one reference feature.
    Type: Application
    Filed: March 24, 2009
    Publication date: July 16, 2009
    Applicant: ALVERIX, INC.
    Inventors: Patrick T. Petruno, John F. Petrilla, Michael J. Brosnan, Rong Zhou, Daniel B. Roitman, Bo U. Curry
  • Publication number: 20090180928
    Abstract: In one aspect, an assay test strip includes a test label that specifically binds a target analyte and a control label that is free of any specific binding affinity for the target analyte and has a different optical characteristic than the test label. In another aspect, an assay test strip includes a test label that specifically binds a target analyte and at least one non-specific-binding label that is free of any specific binding affinity for the target analyte. Systems and methods of reading assay test strips also are described.
    Type: Application
    Filed: March 24, 2009
    Publication date: July 16, 2009
    Applicant: ALVERIX, INC.
    Inventors: Patrick T. Petruno, John F. Petrilla, Michael J. Brosnan, Rong Zhou, Daniel B. Roitman
  • Patent number: 7521260
    Abstract: An assay test strip includes a flow path, a sample receiving zone, a label, a detection zone that includes a region of interest, and at least one position marker. The at least one position marker is aligned with respect to the region of interest such that location of the at least one position marker indicates a position of the region of interest. A diagnostic test system includes a reader that obtains light intensity measurement from exposed regions of the test strip, and a data analyzer that performs at least one of (a) identifying ones of the light intensity measurements obtained from the test region based on at least one measurement obtained from the at least one reference feature, and (b) generating a control signal modifying at least one operational parameter of the reader based on at least one measurement obtained from the at least one reference feature.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: April 21, 2009
    Inventors: Patrick T. Petruno, John F. Petrilla, Michael J. Brosnan, Rong Zhou, Daniel B. Roitman, Bo U. Curry
  • Patent number: 7521259
    Abstract: In one aspect, an assay test strip includes a test label that specifically binds a target analyte and a control label that is free of any specific binding affinity for the target analyte and has a different optical characteristic than the test label. In another aspect, an assay test strip includes a test label that specifically binds a target analyte and at least one non-specific-binding label that is free of any specific binding affinity for the target analyte. Systems and methods of reading assay test strips also are described.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: April 21, 2009
    Inventors: Patrick T. Petruno, John F. Petrilla, Michael J. Brosnan, Rong Zhou, Daniel B. Roitman
  • Patent number: 7459317
    Abstract: Methods for detecting the presence of an analyte in a sample are provided. Aspects of the methods include mixing a sample with an indirectly-detectable labeled binding member that includes a label moiety. The mixing produces a first composition. Unbound labeled binding member is then separated from any resultant binding complexes to produce a second composition that includes the binding complexes. A second light emitted by a light wavelength converter that is excited by a first light generated by the labeled binding member of the binding complexes of the second composition is then detected to detect the presence of the analyte in the sample. Embodiments also include kits and systems that find use in practicing the subject methods.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: December 2, 2008
    Assignee: Alverix, Inc.
    Inventor: Daniel B. Roitman
  • Patent number: 7413709
    Abstract: A polyaryl-ether-ketone (PAEK)-based microfluidic device having an integrated electrospray emitter is disclosed. Bonding of at least one PAEK substrate forming the microfluidic device is accomplished using a solvent-resistant adhesive, such as a polyimide-based adhesive, in combination with an adhesion enhancement treatment. By providing the PAEK-based microfluidic device with an integrated electrospray emitter, efficient and effective analysis of fluid samples is enabled.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: August 19, 2008
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, Kevin Killeen, Hongfeng Yin, Karen L. Seaward
  • Publication number: 20080171397
    Abstract: A multiple analyte detection system includes a carrier having reagents disposed thereat, with each of the reagents capable of optically changing in response to exposure to a respective analyte. The system further includes a photodetector positioned to collectively detect light interacted with each of the reagents, a processor to determine a presence or an absence of each of the analytes in response to the light collectively-detected, and an indicator to provide an indication of the presence or the absence of each of the analytes. A method of detecting multiple analytes includes exposing reagents capable of optically changing in response to exposure to a respective analyte to a sample. The method further includes collectively detecting light interacted with each of the reagents, determining a presence or an absence of each of the analytes in response to the light collectively detected, and indicating the presence or the absence of each of the analytes determined.
    Type: Application
    Filed: January 16, 2007
    Publication date: July 17, 2008
    Inventors: Ian Hardcastle, Carol T. Schembri, John Francis Petrilla, Rene B. Helbing, Daniel B. Roitman
  • Patent number: 7396676
    Abstract: The invention in particular embodiments provides an evanescent wave sensor which includes a ligand bound to a sensor substrate via a NCYX linker moiety, as defined herein. Methods of making the subject evanescent wave sensors are also provided which include contacting a first reactive moiety which has an isocyanato (or isothiocyanato) moiety with a second reactive moiety which has an hydroxyl, thiol, or amino moiety, as further described herein. Also provided by the invention are methods in which a subject evanescent wave sensor is contacted with a sample, and binding of analytes in the sample to the sensor is assessed by evanescent wave detection. The invention also provides kits and systems for performing the subject methods.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: July 8, 2008
    Assignee: Agilent Technologies, Inc.
    Inventors: Karla M. Robotti, Daniel B. Roitman
  • Publication number: 20080102473
    Abstract: A lateral flow assay includes one or more optically-reactive test regions that are examined using light propagating at a wavelength that matches or nearly matches an absorption wavelength associated with each optically-reactive test region. The presence or absence of a color or absorption in each optically-reactive test region may be determined by an individual examining each optically-reactive test region or by one or more detectors that detect fluorescence from one or more optically-reactive test regions or detect light transmitted through or reflected off one or more optically-reactive test regions.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Julie E. Fouquet, Daniel B. Roitman
  • Publication number: 20080081002
    Abstract: A diagnostic assay reader includes a detector configured to read a diagnostic assay result and develop a result signal that is indicative of the result, a processor configured to process the result signal, and an external power interface connected to the detector and to the processor, the external power interface configured to receive external power for the diagnostic assay reader.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Patrick Petruno, Daniel B. Roitman, John F. Petrilla, Rene P. Helbing, Cynthia Sue Mitchell, Ian Hardcastle
  • Publication number: 20080032238
    Abstract: Techniques for controlling the size and/or distribution of a catalyst nanoparticles on a substrate are provided. The catalyst nanoparticles comprise any species that can be used for growing a nanostructure, such as a nanotube, on the substrate surface. Polymers are used as a carrier of a catalyst payload, and such polymers self-assemble on a substrate thereby controlling the size and/or distribution of resulting catalyst nanoparticles. Amphiphilic block copolymers are known self-assembly systems, in which chemically-distinct blocks microphase-separate into a nanoscale morphology, such as cylindrical or spherical, depending on the polymer chemistry and molecular weight. Such block copolymers are used as a carrier of a catalyst payload, and their self-assembly into a nanoscale morphology controls size and/or distribution of resulting catalyst nanoparticles onto a substrate.
    Type: Application
    Filed: September 16, 2005
    Publication date: February 7, 2008
    Inventors: Jennifer Q. Lu, Nicolas J. Moll, Daniel B. Roitman, David T. Dutton
  • Patent number: 7314599
    Abstract: A fabrication and adhesion method for a polyaryl-ether-ketone (PAEK) device, such as a microfluidic device, is disclosed. At least one glassy uncrystallized PAEK substrate is heated up to near or above the glass transition temperature to allow the substrate to crystallize from the glass state, while embossing the substrate with patterns. Bonding the PAEK substrate to another substrate is accomplished using a solvent-resistant adhesive, such as a polyimide-based adhesive, in combination with an adhesion enhancement treatment. In certain embodiments, the adhesion enhancement treatment is a plasma treatment or a chemical sulfonation treatment.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: January 1, 2008
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, Kevin P. Killeen, Karen L. Seaward, Hongfeng Yin, Karla Robotti
  • Patent number: 7312040
    Abstract: The present invention relates to the detection of analyte(s) of interest in a test sample using a rupturable microcapsule biosensor. In general, the microcapsule biosensor includes a microcapsule comprising a shell encapsulating a detectable agent and further includes a probe that is joined to the shell of the microcapsule. The present invention contemplates generally using the microcapsule biosensor to determine if a test sample contains an analyte of interest by exposing the microcapsule biosensor to the test sample and allowing the probe to potentially bind to the analyte. External force is applied to the microcapsule to rupture the shell releasing the detectable agent and thereby indicating the presence of the analyte of interest in the test sample.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: December 25, 2007
    Assignee: Agilent Technologies, Inc.
    Inventor: Daniel B. Roitman
  • Patent number: 7226752
    Abstract: Methods for detecting the presence of an analyte in a sample are provided. Aspects of the methods include mixing a sample with an indirectly-detectable labeled binding member that includes a label moiety. The mixing produces a first composition. Unbound labeled binding member is then separated from any resultant binding complexes to produce a second composition that includes the binding complexes. A second light emitted by a light wavelength converter that is excited by a first light generated by the labeled binding member of the binding complexes of the second composition is then detected to detect the presence of the analyte in the sample. Embodiments also include kits and systems that find use in practicing the subject methods.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: June 5, 2007
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Daniel B. Roitman
  • Patent number: 7226794
    Abstract: Biosensors, methods, and systems for determining the presence of biomolecules using surface-enhanced Raman spectroscopy (SERS) are provided.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: June 5, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, Danielle R. Chamberlin
  • Patent number: 7152758
    Abstract: A dispense system stores a scented material or materials and is provided with an electrical interface that is compatible with a hand-held device. The dispense system can be connected to the hand-held device and driven with the help of the hand-held device to dispense the scented material. The dispense system can be configured to store different scented materials that can be mixed to create different scents. Logic within the hand-held device supports the mixing and dispensing of the scented materials.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: December 26, 2006
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. ltd.
    Inventors: Ronald Shane Fazzio, Richard Ruby, Kevin Patrick Killeen, Daniel B. Roitman, Jeremy Alfred Theil