Patents by Inventor Daniel B. Roitman

Daniel B. Roitman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030175718
    Abstract: A method for detecting the presence of target molecules bound to a working electrode in a first location. The first location is coated with a detection solution containing labeling molecules that include a first charge-separation moiety attached to a first molecule that binds to the target molecule. The first charge-separation moiety includes a material that generates hole-electron pairs in response to being illuminated by light in a first band of wavelengths. After removing any unbound labeling, the working electrode is immersed in a solution containing a compound that is oxidized by the generated holes. The first location is then selectively illuminated with light in the first band; and the change in the current and/or potential is measured between the working electrode and a reference electrode in contact with the solution. The first charge-separation moiety is preferably constructed from particles of a semiconducting material such as TiO2.
    Type: Application
    Filed: March 13, 2002
    Publication date: September 18, 2003
    Inventors: Daniel B. Roitman, Calvin B. Ward, Seiji Inaoka
  • Publication number: 20030148379
    Abstract: A method of making a plurality of substantially identical microbar encoders, the microbar encoders having a characteristic detectable signal and capable of linking to a probe molecule. In these methods, one or more layers are sequentially deposited unsupported by a template onto a substrate, each layer comprising a plurality of indicator materials. The deposited layers are divided into the plurality of microbar encoders. Diverse groups of microbar encoders can be made separately, and these diverse members can be mixed to provide an anisotropic array for screening multiple target molecules in a massively parallel manner. The present inventive methods thus result in large scale, efficient production of distinguishable encoders.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 7, 2003
    Inventors: Daniel B. Roitman, Karen L. Seaward
  • Publication number: 20030117067
    Abstract: An OLED having top and bottom electrodes with an organic light-emitting layer sandwiched between these electrodes. The bottom electrode layer includes a planar conducting layer having a plurality of protrusions thereon. The light-emitting layer covers the bottom electrode with a first surface in contact with the first electrode layer and its second surface having raised areas over the protrusions. The top electrode layer includes a layer of conductive material in contact with the second surface. One of the top and bottom electrodes is transparent to light generated in the light-emitting layer. The size and spacing of the protrusions is chosen to provide increased light output from the transparent one of the top and bottom electrodes relative to the light output that would be obtained in the absence of the protrusions.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Daniel B. Roitman, Homer Antoniadis, Annette V. Grot
  • Patent number: 6582756
    Abstract: A method for fabricating an electroluminescent display and the substrate and apparatus used therein. The display is preferably constructed on a pre-constructed substrate that includes a flexible base layer having a conducting surface on one side thereof. The base layer is impermeable to oxygen and water. The substrate includes a plurality of wells defined by a barrier layer, each well having an electrode layer connected electrically with the conducting surface. A removable protective layer covering the wells protects the electrode layer from attack by oxygen and water prior to being utilized to make the display. In one embodiment, each of the wells also contains an electron transfer layer in contact with the electrode layer.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: June 24, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Homer Antoniadis, Hoyle Curtis, Ronald L. Moon, Daniel B. Roitman, James R. Sheats
  • Publication number: 20030111440
    Abstract: A method of fabricating nanosized holes with controlled geometries employs tools and methods developed in the microelectronics industry. The method exploits the fact that epitaxially grown film thicknesses can be controlled within a few atomic monolayers and that by using etching techniques, trenches and channels can be created that are only a few nanometers wide. The method involves bonding two shallow channels at an angle such that a nanopore is defined by the intersection. Thus, a nanopore-defining device includes a nanopore with dimensions that are determined by the dimensions and orientations of the intersecting channels, with the dimensions being accurately controlled within a few monolayers.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Inventors: Daniel B. Roitman, Dietrich W. Vook, Theodore I. Kamins
  • Publication number: 20030104397
    Abstract: The invention provides a solid support for adsorbing a biomolecule. The support comprises a surface coating having a non-nucleotidic polymer tethered to a surface reactive site. The polymer comprises a backbone, terminus, and adsorbing moieties covalently attached to the backbone and capable of adsorbing a biomolecule that can assume a plurality of conformations. The polymer is generally tethered to the surface at its terminus and the backbone exhibits sufficient mobility and flexibility such that a biomolecule adsorbed by the adsorbing moieties can assume a desired conformation for hybridization. Also provided is a process for preparing a surface coating having a functionalized surface.
    Type: Application
    Filed: December 3, 2001
    Publication date: June 5, 2003
    Inventors: Steven M. Lefkowitz, Daniel B. Roitman, Nelson R. Holcomb
  • Publication number: 20030080042
    Abstract: An adjustable nanopore is fabricated by placing the surfaces of two planar substrates in contact, wherein each substrate contains a hole having sharp corners and edges. A corner is brought into proximity with an edge to define a triangular aperture of variable area. Ionic current in a liquid solution and through the aperture is monitored as the area of the aperture is adjusted by moving one planar substrate with respect to the other along two directional axes and a rotational axis. Piezoelectric positioners can provide subnanometer repeatability in the adjustment process. The invention is useful for characterizing, cleaving, and capturing molecules, molecular complexes, and supramolecular complexes which pass through the nanopore, and provides an improvement over previous devices in which the hole size of nanopores fabricated by etching and/or redeposition is fixed after fabrication.
    Type: Application
    Filed: October 30, 2001
    Publication date: May 1, 2003
    Inventors: Philip W. Barth, Daniel B. Roitman, Joel Myerson
  • Patent number: 6552101
    Abstract: A precursor polymer that can be electrochemically polymerized to form an electrically conducting polymer. A precursor according to the present invention includes a plurality of electrochemical polymerizable monomers, each monomer having first and second polymer-forming active sites that can be joined by electrochemical polymerization. The monomers also include third and fourth polymer-forming active sites that can be joined chemically in solution. The monomers in the precursor polymer are linked by the third and fourth polymer-forming active sites. The monomers are chosen such the precursor polymer is soluble in a predetermined solvent while the polymer resulting from the electrochemical polymerization of the precursor polymers via the first and second polymer-forming sites is electrically conducting and insoluble in the solvent. The monomers can be synthesized from fluorene, triophene, pyrrol, biphenyl, poly(vinyl carbazole) or poly (vinyl oxy thiophene).
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: April 22, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, Seiji Inaoka, Riogoberto C. Advincula
  • Patent number: 6552488
    Abstract: A color organic electroluminescent device includes color filters, light emitting layers and substrate integrated into a single assembly, with the light emitting layers lying between the substrate and the color filters. Unlike color electroluminescent devices where an image must be viewed through a transparent substrate, or where color filters are deposited upon another device and later combined with the assembly, the present disclosure calls for a transparent protective layer of silicon nitride or a similar material to be deposited over the light emitting layers to protect the light emitting layers from oxygen and moisture, and to serve as a platform for color filters. In order to achieve sufficient density in the protective layer and avoid defects, a cold plasma deposition or similar process is used for deposition of the protective layer. By viewing light through this protective layer instead of a substrate, nearly any substrate can be used.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: April 22, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, John S. Hargreaves, Homer Antoniadis, Karen L. Seaward
  • Publication number: 20030057828
    Abstract: An OLED for emitting light at a predetermined peak wavelength, &lgr;. The OLED includes an anode layer, a cathode layer and an electroluminescent layer constructed from an organic light emitting compound that generates light, including light having a wavelength equal to &lgr;, by the recombination of holes and electrons. The electroluminescent layer is electrically connected to the anode layer and the cathode layer and is located between the anode and cathode layers. The OLED includes a first reflector and a second reflector, displaced from one another. The anode layer or cathode layer can serve as one of the reflectors. A spacer layer constructed from a material that is transparent at &lgr; is included between the reflectors and has a thickness that is adjusted such that the optical path length between the first and second reflectors is equal to N &lgr;/2, where N is a positive integer. The spacer may include a hole transport material located between the electroluminescent layer and the anode layer.
    Type: Application
    Filed: March 21, 2001
    Publication date: March 27, 2003
    Inventors: Daniel B. Roitman, Homer Antoniadis
  • Patent number: 6533918
    Abstract: A method for depositing an electrically conducting film on an electrode and the film resulting from that method. An electrically conducting film according to the present invention is deposited by immersing the electrode in a solution of a precursor polymer in a predetermined solvent. The precursor polymer includes a plurality of electrochemical polymerizable monomers. Each monomer has first and second polymer-forming active sites that can be joined by electrochemical polymerization and third and fourth polymer-forming active sites that can be joined chemically in solution. The precursor polymer is constructed from the monomers joined by the third and fourth polymer-forming active sites. The precursor polymer is soluble in the solvent whereas a polymer formed by electrochemical polymerization of the first and second polymer-forming active sites is insoluble in the solvent.
    Type: Grant
    Filed: September 11, 2001
    Date of Patent: March 18, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, Seiji Inaoka, Riogoberto C. Advincula
  • Publication number: 20030017305
    Abstract: A fabrication and adhesion method for a polyaryl-ether-ketone (PAEK) device, such as a microfluidic device, is disclosed. At least one glassy uncrystallized PAEK substrate is heated up to near or above the glass transition temperature to allow the substrate to crystallize from the glass state, while embossing the substrate with patterns. Bonding the PAEK substrate to another substrate is accomplished using a solvent-resistant adhesive, such as a polyimide-based adhesive, in combination with an adhesion enhancement treatment. In certain embodiments, the adhesion enhancement treatment is a plasma treatment or a chemical sulfonation treatment.
    Type: Application
    Filed: April 2, 2002
    Publication date: January 23, 2003
    Inventors: Daniel B. Roitman, Kevin P. Killeen, Karen L. Seaward, Hongfeng Yin, Karla Robotti
  • Patent number: 6366017
    Abstract: The present invention provides OLEDs having superior brightness, which can be formed on opaque substrates such as silicon, and methods for producing such OLEDs. OLEDs according to the invention comprise a reflective electrode on the substrate, an organic active layer which provides electroluminescence, an injection layer, and a transparent organic electrode. Light from the active layer which is initially directed backward is reflected by the reflective layer to increase the apparent brightness of the diode in the forward direction.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: April 2, 2002
    Assignee: Agilent Technologies, Inc/
    Inventors: Homer Antoniadis, Daniel B. Roitman
  • Publication number: 20020011420
    Abstract: A method for depositing an electrically conducting film on an electrode and the film resulting from that method. An electrically conducting film according to the present invention is deposited by immersing the electrode in a solution of a precursor polymer in a predetermined solvent. The precursor polymer includes a plurality of electrochemical polymerizable monomers. Each monomer has first and second polymer-forming active sites that can be joined by electrochemical polymerization and third and fourth polymer-forming active sites that can be joined chemically in solution. The precursor polymer is constructed from the monomers joined by the third and fourth polymer-forming active sites. The precursor polymer is soluble in the solvent whereas a polymer formed by electrochemical polymerization of the first and second polymer-forming active sites is insoluble in the solvent.
    Type: Application
    Filed: September 11, 2001
    Publication date: January 31, 2002
    Inventors: Daniel B. Roitman, Seiji Inaoka, Riogoberto C. Advincula
  • Patent number: 6294245
    Abstract: A method for depositing an electrically conducting film on an electrode and the film resulting from that method. An electrically conducting film according to the present invention is deposited by immersing the electrode in a solution of a precursor polymer in a predetermined solvent. The precursor polymer includes a plurality of electrochemical polymerizable monomers. Each monomer has first and second polymer-forming active sites that can be joined by electrochemical polymerization and third and fourth polymer-forming active sites that can be joined chemically in solution. The precursor polymer is constructed from the monomers joined by the third and fourth polymer-forming active sites. The precursor polymer is soluble in the solvent whereas a polymer formed by electrochemical polymerization of the first and second polymer-forming active sites is insoluble in the solvent.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: September 25, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, Seiji Inaoka, Riogoberto C. Advincula
  • Patent number: 6191433
    Abstract: An OLED display device and a method of fabricating the device utilize a patterned layer of conductive pads formed over a substrate to fabricate a cathode layer without the need to subsequently pattern the cathode layer to create individually addressable cathodes. The design of the OLED display device is such that the cathode layer is positioned below the anode layer. The OLED display device may be configured to emit light through the substrate or through the top layer, i.e., the anode layer. In a first embodiment, the conductive pads have sharp edges that effectively pattern the cathode layer when it is formed over the pads. In a second embodiment, the conductive pads do not include sharp edges. In this embodiment, the cathode layer is made of a composite material, which includes cathode components and non-conducting components.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: February 20, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, Homer Antoniadis
  • Patent number: 6174613
    Abstract: A method for fabricating an electroluminescent display and the substrate and apparatus used therein. The display is preferably constructed on a pre-constructed substrate that includes a flexible base layer having a conducting surface on one side thereof. The base layer is impermeable to oxygen and water. The substrate includes a plurality of wells defined by a barrier layer, each well having an electrode layer connected electrically with the conducting surface. A removable protective layer covering the wells protects the electrode layer from attack by oxygen and water prior to being utilized to make the display. In one embodiment, each of the wells also contains an electron transfer layer in contact with the electrode layer. The electron transfer layer includes a material that improves the efficiency of the injection of electrons from the electrode layer into the electroluminescent layer of the display.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: January 16, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Homer Antoniadis, Hoyle Curtis, Ronald L. Moon, Daniel B. Roitman, James R. Sheats
  • Patent number: 6146225
    Abstract: A barrier for preventing water or oxygen from a source thereof from reaching a device that is sensitive to water or oxygen. The barrier is constructed by depositing a first polymer layer between the device and the source. An inorganic layer is deposited on the first polymer layer of the device by plasma enhanced chemical vapor deposition utilizing an electron cyclotron resonance source ECR-PECVD. A second polymer layer is then deposited on the inorganic layer. The inorganic layer is preferably an oxide or nitride. A second barrier layer having a compound that absorbs oxygen or water can be placed between the inorganic layer and the device to further retard the passage of oxygen or water. The present invention is particularly useful in encapsulating electroluminescent displays.
    Type: Grant
    Filed: July 30, 1998
    Date of Patent: November 14, 2000
    Assignee: Agilent Technologies, Inc.
    Inventors: James R. Sheats, Mark R. Hueschen, Karen L. Seaward, Daniel B. Roitman, George Andrew Davidson Briggs
  • Patent number: 6137221
    Abstract: An organic polymer based display and method for making the same. The display is constructed on a flexible sheet having first and second surfaces, the first and second surfaces being parallel to one another. The flexible sheet is transparent to light of a first wavelength. A first electrode, which includes a first electrode layer in contact with the first surface, is deposited on the flexible sheet. The first electrode layer is also transparent to light of the first wavelength. A light-emitting layer that includes an organic polymer is deposited on the electrode layer. A second electrode that includes a second electrode layer in contact with the light emitting layer is deposited on the light-emitting layer. The light emitting layer generates light of the first wavelength when a potential difference is applied across the first and second electrodes. A light conversion layer is deposited in contact with the second surface of the flexible sheet.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: October 24, 2000
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, James R. Sheats
  • Patent number: 6111356
    Abstract: A display having a plurality of addressable pixels and a method for constructing the same. The display includes a substrate having a first conducting layer thereon. The conducting layer includes a plurality of parallel row electrodes having edges separated by insulating material. A first polymer layer constructed from one or more thin films overlies the parallel row electrodes. An insulating layer overlies the polymer layer, the insulating layer having windows therein defining pixels for the display. The insulating layer overlies the edges of the row electrodes while providing access to the first polymer layer in the area of the pixels. A second conducting layer overlies the insulating layer and includes a plurality of separated column electrodes. Each column electrode crosses a plurality of the row electrodes and is located over the windows in the insulating layer at points defining the pixels.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: August 29, 2000
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel B. Roitman, James R. Sheats, Fereidoun Pourmirzaie