Patents by Inventor Daniel Calafut

Daniel Calafut has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090230465
    Abstract: A field effect transistor includes a body region of a first conductivity type over a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminates within the semiconductor region. At least one conductive shield electrode is disposed in the gate trench. A gate electrode is disposed in the gate trench over but insulated from the at least one conductive shield electrode. A shield dielectric layer insulates the at lease one conductive shield electrode from the semiconductor region. A gate dielectric layer insulates the gate electrode from the body region. The shield dielectric layer is formed such that it flares out and extends directly under the body region.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 17, 2009
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Publication number: 20090200606
    Abstract: A field effect transistor (FET) includes a source electrode for receiving an externally-provided source voltage. The FET further includes an active region and a termination region surrounding the active region. A resistive element is coupled to the termination region, wherein upon occurrence of avalanche breakdown in the termination region an avalanche current starts to flow in the termination region, and the resistive element is configured to induce a portion of the avalanche current to flow through the termination region and a remaining portion of the avalanche current to flow through the active region. During operation, one end of the resistive element is biased to the source voltage.
    Type: Application
    Filed: April 16, 2009
    Publication date: August 13, 2009
    Inventors: Hamza Yilmaz, Daniel Calafut
  • Publication number: 20090191678
    Abstract: A semiconductor region with an epitaxial layer extending over the semiconductor region is provided. A first silicon etch is performed to form an upper trench portion extending into and terminating within the epitaxial layer. A protective material is formed extending along sidewalls of the upper trench portion and over mesa regions adjacent the upper trench portion but not along a bottom surface of the upper trench portion. A second silicon etch is performed to form a lower trench portion extending from the bottom surface of the upper trench portion through the epitaxial layer and terminating within the semiconductor region, such that the lower trench portion is narrower than the upper trench portion.
    Type: Application
    Filed: April 6, 2009
    Publication date: July 30, 2009
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Publication number: 20090111227
    Abstract: A method for forming a field effect transistor with an active area and a termination region surrounding the active area includes forming a well region in a first silicon region, where the well region and the first silicon region are of opposite conductivity type. Gate trenches extending through the well region and terminating within the first silicon region are formed. A recessed gate is formed in each gate trench. A dielectric cap is formed over each recessed gate. The well region is recessed between adjacent trenches to expose upper sidewalls of each dielectric cap. A blanket source implant is carried out to form a second silicon region in an upper portion of the recessed well region between every two adjacent trenches. A dielectric spacer is formed along each exposed upper sidewall of the dielectric cap, with every two adjacent dielectric spacers located between every two adjacent gate trenches forming an opening over the second silicon region.
    Type: Application
    Filed: December 30, 2008
    Publication date: April 30, 2009
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Patent number: 7521773
    Abstract: A field effect transistor includes an active region and a termination region surrounding the active region. A resistive element is coupled to the termination region, wherein upon occurrence of avalanche breakdown in the termination region an avalanche current starts to flow in the termination region, and the resistive element is configured to induce a portion of the avalanche current to flow through the termination region and a remaining portion of the avalanche current to flow through the active region.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 21, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut
  • Patent number: 7514322
    Abstract: A FET includes a trench in a semiconductor region. The trench has a lower portion with a shield electrode therein, and an upper portion with a gate electrode therein, where the upper portion is wider than the lower portion. The semiconductor region includes a substrate of a first conductivity type and a first silicon region of a second conductivity type over the substrate. The first silicon region has a first portion extending to a depth intermediate top and bottom surfaces of the gate electrode. The first silicon region has a second portion extending to a depth intermediate top and bottom surfaces of the shield electrode. The semiconductor region further includes a second silicon region of the first conductivity type between the lower trench portion and the second portion of the first silicon region that has a laterally-graded doping concentration decreasing in a direction away from the sidewalls of the lower trench portion.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: April 7, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Patent number: 7504303
    Abstract: A method for forming a shielded gate field effect transistor includes the following steps. Trenches extending into a silicon region are formed using a mask that includes a protective layer. A shield dielectric layer lining sidewalls and bottom of each trench is formed. A shield electrode is formed in a bottom portion of each trench. Protective spacers are formed along upper sidewalls of each trench. An inter-electrode dielectric is formed over the shield electrode. The protective spacers and the protective layer of the mask prevent formation of inter-electrode dielectric along the upper sidewalls of each trench and over mesa surfaces adjacent each trench. A gate electrode is formed in each trench over the inter-electrode dielectric.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: March 17, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Patent number: 7504306
    Abstract: A monolithically integrated field effect transistor and Schottky diode includes gate trenches extending into a semiconductor region. Source regions having a substantially triangular shape flank each side of the gate trenches. A contact opening extends into the semiconductor region between adjacent gate trenches. A conductor layer fills the contact opening to electrically contact: (a) the source regions along at least a portion of a slanted sidewall of each source region, and (b) the semiconductor region along a bottom portion of the contact opening, wherein the conductor layer forms a Schottky contact with the semiconductor region.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: March 17, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven Sapp, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Publication number: 20080258213
    Abstract: A FET includes a trench in a semiconductor region. The trench has a lower portion with a shield electrode therein, and an upper portion with a gate electrode therein, where the upper portion is wider than the lower portion. The semiconductor region includes a substrate of a first conductivity type and a first silicon region of a second conductivity type over the substrate. The first silicon region has a first portion extending to a depth intermediate top and bottom surfaces of the gate electrode. The first silicon region has a second portion extending to a depth intermediate top and bottom surfaces of the shield electrode. The semiconductor region further includes a second silicon region of the first conductivity type between the lower trench portion and the second portion of the first silicon region that has a laterally-graded doping concentration decreasing in a direction away from the sidewalls of the lower trench portion.
    Type: Application
    Filed: May 22, 2008
    Publication date: October 23, 2008
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Patent number: 7416948
    Abstract: A field effect transistor is formed as follows. Trenches are formed in a semiconductor region of a first conductivity type. Each trench is partially filled with one or more materials. A dual-pass angled implant is carried out to implant dopants of a second conductivity type into the semiconductor region through an upper surface of the semiconductor region and through upper trench sidewalls not covered by the one or more material. A high temperature process is carried out to drive the implanted dopants deeper into the mesa region thereby forming body regions of the second conductivity type between adjacent trenches. Source regions of the first conductivity type are then formed in each body region.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: August 26, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Nathan L. Kraft, Ashok Challa, Steven P. Sapp, Hamza Yilmaz, Daniel Calafut, Dean E. Probst, Rodney S. Ridley, Thomas E. Grebs, Christopher B. Kocon, Joseph A. Yedinak, Gary M. Dolny
  • Patent number: 7393749
    Abstract: A field effect transistor is formed as follows. A semiconductor region of a first conductivity type with an epitaxial layer of a second conductivity extending over the semiconductor region is provided. A trench extending through the epitaxial layer and terminating in the semiconductor region is formed. A two-pass angled implant of dopants of the first conductivity type is carried out to thereby form a region of first conductivity type along the trench sidewalls. A threshold voltage adjust implant of dopants of the second conductivity type is carried out to thereby convert a conductivity type of a portion of the region of first conductivity type extending along upper sidewalls of the trench to the second conductivity type. Source regions of the first conductivity type flanking each side of the trench are formed.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: July 1, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Publication number: 20080087963
    Abstract: An electrostatic discharge (ESD) protection network for power MOSFETs includes parallel branches, containing polysilicon zener diodes and resistors, used for protecting the gate from rupture caused by high voltages caused by ESD. The branches may have the same or independent paths for voltage to travel across from the gate region into the semiconductor substrate. Specifically, the secondary branch has a higher breakdown voltage than the primary branch so that the voltage is shared across the two branches of the protection network. The ESD protection network of the device provides a more effective design without increasing the space used on the die. The ESD protection network can also be used with other active and passive devices such as thyristors, insulated-gate bipolar transistors, and bipolar junction transistors.
    Type: Application
    Filed: October 1, 2007
    Publication date: April 17, 2008
    Inventors: Daniel Calafut, Hamza Yilmaz, Steven Sapp
  • Publication number: 20070228518
    Abstract: A field effect transistor includes an active region and a termination region surrounding the active region. A resistive element is coupled to the termination region, wherein upon occurrence of avalanche breakdown in the termination region an avalanche current starts to flow in the termination region, and the resistive element is configured to induce a portion of the avalanche current to flow through the termination region and a remaining portion of the avalanche current to flow through the active region.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 4, 2007
    Inventors: Hamza Yilmaz, Daniel Calafut
  • Publication number: 20070082441
    Abstract: A field effect transistor is formed as follows. Trenches are formed in a semiconductor region of a first conductivity type. Each trench is partially filled with one or more materials. A dual-pass angled implant is carried out to implant dopants of a second conductivity type into the semiconductor region through an upper surface of the semiconductor region and through upper trench sidewalls not covered by the one or more material. A high temperature process is carried out to drive the implanted dopants deeper into the mesa region thereby forming body regions of the second conductivity type between adjacent trenches. Source regions of the first conductivity type are then formed in each body region.
    Type: Application
    Filed: October 23, 2006
    Publication date: April 12, 2007
    Inventors: Nathan Kraft, Ashok Challa, Steven Sapp, Hamza Yilmaz, Daniel Calafut, Dean Probst, Rodney Ridley, Thomas Grebs, Christopher Kocon, Joseph Yedinak, Gary Dolny
  • Publication number: 20060281249
    Abstract: A field effect transistor is formed as follows. A semiconductor region of a first conductivity type with an epitaxial layer of a second conductivity extending over the semiconductor region is provided. A trench extending through the epitaxial layer and terminating in the semiconductor region is formed. A two-pass angled implant of dopants of the first conductivity type is carried out to thereby form a region of first conductivity type along the trench sidewalls. A threshold voltage adjust implant of dopants of the second conductivity type is carried out to thereby convert a conductivity type of a portion of the region of first conductivity type extending along upper sidewalls of the trench to the second conductivity type. Source regions of the first conductivity type flanking each side of the trench are formed.
    Type: Application
    Filed: June 8, 2006
    Publication date: December 14, 2006
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Publication number: 20060273386
    Abstract: A field effect transistor includes a body region of a first conductivity type over a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminates within the semiconductor region. At least one conductive shield electrode is disposed in the gate trench. A gate electrode is disposed in the gate trench over but insulated from the at least one conductive shield electrode. A shield dielectric layer insulates the at lease one conductive shield electrode from the semiconductor region. A gate dielectric layer insulates the gate electrode from the body region. The shield dielectric layer is formed such that it flares out and extends directly under the body region.
    Type: Application
    Filed: May 24, 2006
    Publication date: December 7, 2006
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Kocon, Steven Sapp, Dean Probst, Nathan Kraft, Thomas Grebs, Rodney Ridley, Gary Dolny, Bruce Marchant, Joseph Yedinak
  • Publication number: 20060267090
    Abstract: A monolithically integrated field effect transistor and Schottky diode includes gate trenches extending into a semiconductor region. Source regions having a substantially triangular shape flank each side of the gate trenches. A contact opening extends into the semiconductor region between adjacent gate trenches. A conductor layer fills the contact opening to electrically contact: (a) the source regions along at least a portion of a slanted sidewall of each source region, and (b) the semiconductor region along a bottom portion of the contact opening, wherein the conductor layer forms a Schottky contact with the semiconductor region.
    Type: Application
    Filed: April 4, 2006
    Publication date: November 30, 2006
    Inventors: Steven Sapp, Hamza Yilmaz, Christopher Rexer, Daniel Calafut
  • Publication number: 20060024890
    Abstract: A double-diffused metal-oxide-semiconductor (“DMOS”) field-effect transistor with an improved gate structure. The gate structure includes a first portion of a first conductivity type for creating electron flow from the source to the drain when a charge is applied to the gate. The gate structure includes a second portion of a second conductivity type having a polarity that is opposite a polarity of the first conductivity type, for decreasing a capacitance charge under the gate. A second structure for decreasing a capacitance under the gate includes an implant region in the semiconductor substrate between a channel region, where the implant region is doped to have a conductivity opposite the channel region.
    Type: Application
    Filed: September 26, 2005
    Publication date: February 2, 2006
    Inventor: Daniel Calafut
  • Publication number: 20050199918
    Abstract: In accordance with the present invention, a monolithically integrated structure combines a field effect transistor and a Schottky structure in an active area of a semiconductor substrate. The field effect transistor includes a first trench extending into the substrate and substantially filled by conductive material forming a gate electrode of the field effect transistor. A pair of doped source regions are positioned adjacent to and on opposite sides of the trench and inside a doped body region. The Schottky structure includes a pair of adjacent trenches extending into the substrate. Each of the pair of adjacent trenches is substantially filled by a conductive material which is separated from trench side-walls by a thin layer of dielectric. The Schottky structure consumes 2.5% to 5.0% of the active area, and the field effect transistor consumes the remaining portion of the active area.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 15, 2005
    Inventors: Daniel Calafut, Christopher Rexer
  • Patent number: 5767550
    Abstract: In one embodiment, modifications to the polysilicon gate, body, source, and contact masks of a DMOS process add a source-body monocrystalline gate protection diode under the gate pad by implanting an anode region beneath the gate. The anode is connected to the gate through the gate metal in the pad. In addition to the gate-source diode, there is also a connection from the drain to the gate through the anode formed by the body region beneath the gate. This embodiment includes a junction terminating field plate. The presence of the field plate creates a special protection device similar to a zener diode, but which exhibits a current/voltage characteristic similar to a thyristor. A significant feature of this embodiment is that the zener breakdown voltage is easily adjusted by a simple modification to the fabrication process. The field plate creates two opposing junctions with the spacing determined by the length of the field plate.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: June 16, 1998
    Assignee: National Semiconductor Corporation
    Inventors: Daniel Calafut, Izak Bencuya, Steven Sapp