Patents by Inventor Daniel Caruso

Daniel Caruso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115143
    Abstract: A system and method for promoting and safeguarding the wellbeing of patients in relation to a fluid injection may obtain patient data; determine, based on the patient data, an initial risk prediction for a patient for a fluid injection to be administered to the patient, the initial risk prediction including a probability that the patient experiences at least one adverse event in response to the fluid injection; provide, to a user device, before the fluid injection is administered to the patient, the initial risk prediction; determine, after the fluid injection is started, sensor data associated with the patient; determine, based on the sensor data determined after the fluid injection is started, a current risk prediction including a probability that the patient experiences the at least one adverse event in response to the fluid injection; and provide, to the user device, the current risk prediction.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventors: Johannes Anton Thüring, Arthur Uber, III, David Griffiths, Michael McDermott, Charles Lang, Linda Van Roosmalen, Barry Skirble, Adam Czibur, Daniel Moore, Vincenzo Caruso, Brandon Clarke
  • Patent number: 11781523
    Abstract: A method for assembling a shell section of a wind turbine blade includes providing a support, the support comprising a surface having a primary surface portion configured for supporting a first component and a secondary surface portion configured for supporting a second component. The method also includes arranging a second component on the secondary surface portion such that an outer surface of the second component is facing the secondary surface portion. The method further includes arranging a first component on the primary surface portion such that an outer surface of the first component is facing the primary surface portion, and such that a first primary joint surface of the first component is facing a second joint surface of the second component. Arranging the first component includes applying a force to the first component to force the outer surface of the first component towards the primary surface portion and the first primary joint surface towards the second joint surface.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: October 10, 2023
    Assignee: LM Wind Power A/S
    Inventors: Gregory Walter Lorenz, Christopher Daniel Caruso, Fritz Andres Campo, Christopher Monk, Brian Scott Redmon
  • Patent number: 11572861
    Abstract: The present disclosure is directed to a method for forming a wind turbine rotor blade. The method includes placing first and second prefabricated skin panels defining a portion of a root section of the wind turbine rotor blade, a pressure side of the wind turbine rotor blade, or a suction side of the wind turbine rotor blade in a mold. The first and second prefabricated skin panels partially overlap to define a connection region. A vacuum bag is placed over the mold. The connection region is infused with a resin.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: February 7, 2023
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso, Jamie T. Livingston
  • Publication number: 20220282699
    Abstract: A segmented rotor blade for a wind turbine. The segmented rotor blade including at least a first blade segment and a second blade segment extending in opposite directions from a joint. Each of the first and second blade segments including at least one shell member defining an airfoil surface. A joint assembly coupling the first blade segment to the second blade segment via a dovetail connection at the joint. The joint assembly including at least one receiving section defining a receiving cavity, a joining structure received within the at least one receiving section to establish a dovetail connection, and a securement assembly securing the joining structure within the at least one receiving section so as to secure the dovetail connection.
    Type: Application
    Filed: June 30, 2020
    Publication date: September 8, 2022
    Inventors: Aaron Alpheus Yarbrough, Christopher Daniel Caruso, Andrew Mitchell Rodwell, Donald Joseph Kasperski
  • Publication number: 20220082080
    Abstract: A method for assembling a shell section of a wind turbine blade includes providing a support, the support comprising a surface having a primary surface portion configured for supporting a first component and a secondary surface portion configured for supporting a second component. The method also includes arranging a second component on the secondary surface portion such that an outer surface of the second component is facing the secondary surface portion. The method further includes arranging a first component on the primary surface portion such that an outer surface of the first component is facing the primary surface portion, and such that a first primary joint surface of the first component is facing a second joint surface of the second component. Arranging the first component includes applying a force to the first component to force the outer surface of the first component towards the primary surface portion and the first primary joint surface towards the second joint surface.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 17, 2022
    Inventors: Gregory Walter Lorenz, Christopher Daniel Caruso, Fritz Andres Campo, Christopher Monk, Brian Scott Redmon
  • Patent number: 11125205
    Abstract: Systems and methods for joining blade components of a rotor blade are provided. A method includes positioning a first blade component and a second blade component such that a joint location of the first blade component and a joint location of the second blade component are proximate each other. The method further includes applying a force to an outer surface of the second blade component and an opposing force to an inner surface of the second blade component. The force and opposing force maintain an aerodynamic contour of the second blade component. The method further includes connecting the joint location of the first blade component and the joint location of the second blade component together.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: September 21, 2021
    Assignee: General Electric Company
    Inventors: Daniel Alan Hynum, James Robert Tobin, Christopher Daniel Caruso, Aaron A. Yarbrough
  • Patent number: 10870242
    Abstract: The present disclosure is directed methods for modifying molds of rotor blades of a wind turbine. In certain embodiments, the blade mold is constructed, at least in part, of a thermoplastic material optionally reinforced with a fiber material. In one embodiment, the method includes identifying at least one blade mold addition for the mold of the rotor blade and positioning the blade mold addition at a predetermined location of the mold of the rotor blade. Further, the blade mold addition is constructed, at least in part, of a thermoplastic material. Thus, the method includes applying at least one of heat, pressure, or one or more chemicals at an interface of the blade mold addition and the mold so as to join the blade mold addition to the mold. In further embodiments, the methods described herein are also directed repairing thermoplastic blade molds.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: December 22, 2020
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10830205
    Abstract: The present disclosure is directed to a modular rotor blade constructed of thermoset and/or thermoplastic materials for a wind turbine and methods of assembling same. The rotor blade includes a pre-formed main blade structure constructed, at least in part, from a thermoset material. The rotor blade also includes at least one blade segment configured with the main blade structure. The blade segment(s) is constructed, at least in part, of a thermoplastic material reinforced with at least one fiber material.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum
  • Patent number: 10760545
    Abstract: A rotor blade assembly for a wind turbine may include a first blade segment having a first joint end and a second blade segment having a second joint end, with the blade segments being coupled together such that the first and second joint ends are located at or adjacent to a joint interface between the blade segments. The blade assembly may also include a pre-loaded beam extending outwardly from the second blade segment across the joint interface such that the pre-loaded beam is received within the first blade segment. The pre-loaded beam may be compressed between the opposed internal structural components of the first blade segment such that a first engagement interface is defined between a first side of the pre-loaded beam and the first internal structural component and a second engagement interface is defined between an opposed second side of the pre-loaded beam and the second internal structural component.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: September 1, 2020
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso
  • Patent number: 10760544
    Abstract: A jointed rotor blade assembly may include a first blade segment having a first outer shell terminating at a first joint end and a second blade segment coupled to the first blade segment at a blade joint. The second blade segment may include a second outer shell terminating at a second joint end. The outer shells may overlap one another at the blade joint such that an overlapping region is defined between the first and second joint ends. In addition, the first outer shell may be spaced apart from the second outer shell along at least a portion of the overlapping region such that a gap is defined between the outer shells within the overlapping region. Moreover, the rotor blade assembly may include a sealing member positioned between the outer shells within the overlapping region that is configured to allow relative movement between the outer shells at the blade joint.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 1, 2020
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso, Donald Joseph Kasperski, Daniel Alan Hynum
  • Patent number: 10738759
    Abstract: The present disclosure is directed methods for manufacturing spar caps for wind turbine rotor blades. In certain embodiments, the method includes forming an outer frame of the spar cap via at least one of three-dimensional (3D) pultrusion, thermoforming, or 3D printing. As such, the outer frame has a varying cross-section that corresponds to a varying cross-section of the rotor blade along a span thereof. The method also includes arranging a plurality of structural materials (e.g. layers of pultruded plates) within the pultruded outer frame of the spar cap and infusing the structural materials and the outer frame together via a resin material so as to form the spar cap. The resulting spar cap can then be easily incorporated into conventional rotor blade manufacturing processes and/or welded or bonded to an existing rotor blade.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: August 11, 2020
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10669984
    Abstract: The present disclosure is directed to a method for manufacturing a blade component for a rotor blade of a wind turbine. The method includes arranging a fiber material in a mold of the blade component. The method also includes placing at least one pre-cured laminate material atop the fiber material. Another step includes infusing the fiber material and the pre-cured laminate material together via a resin material so as to form the blade component. The method also includes allowing the blade component to cure, the pre-cured laminate material forming at least a portion of an outer surface of the blade component.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: June 2, 2020
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso, Daniel Alan Hynum
  • Patent number: 10641240
    Abstract: The present disclosure is directed to methods for joining rotor blade components using thermoplastic welding.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 5, 2020
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Aaron A. Yarbrough, Daniel Alan Hynum, Christopher Daniel Caruso
  • Patent number: 10584678
    Abstract: The present subject matter is directed to a rotor blade assembly for a wind turbine having an improved shear web configuration. The rotor blade assembly includes an upper shell member having a spar cap configured on an internal surface thereof and a lower shell member having a spar cap configured on an internal surface thereof. The shear web extends between the spar caps along a longitudinal length of the blade. Further, the shear web includes at least one pultruded component defining a hollow cross-section.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: March 10, 2020
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough
  • Patent number: 10563636
    Abstract: A joint assembly for joining rotor blade segments of a wind turbine rotor blade includes a female structural member secured within a first rotor blade segment. The female structural member includes first bore holes on opposing sides thereof that are aligned in a chord-wise direction. Further, the joint assembly includes a male structural member extending longitudinally from an end face of a second rotor blade segment. As such, the male structural member is received within the female structural member of the first rotor blade segment such that the first and second rotor blade segments are aligned and connected. The male structural member includes second bore holes on opposing sides thereof. Further, the second bore holes are aligned with the first bore holes. Moreover, the joint assembly includes at least one chord-wise extending pin extending through the first and second bore holes so as to join the first and second rotor blade segments.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: February 18, 2020
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso, Scott Jacob Huth, Andrew Mitchell Rodwell
  • Patent number: 10550823
    Abstract: A method for balancing segmented rotor blades for a wind turbine may include determining a weight for each of a plurality of blade segments, wherein each blade segment extends between a first end and a second and is configured to form a common spanwise section of a segmented rotor blade between the first and second ends. The method may also include determining an initial static moment for each blade segment based on the weight of the blade segment, wherein the initial static moment of at least one of the blade segments differing from the initial static moments of the remainder of the blade segments. Additionally, the method may include adding mass to each of the blade segments to increase the initial static moment for each blade segment to a predetermined static moment, wherein the predetermined static moment is greater than each of the initial static moments of the blade segments.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: February 4, 2020
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Donald Joseph Kasperski, Daniel Alan Hynum, Christopher Daniel Caruso
  • Patent number: 10533533
    Abstract: The present disclosure is directed to a method of manufacturing a modular rotor blade for a wind turbine. The method includes providing a plurality of resin systems for manufacturing a plurality of blade components for the modular rotor blade. Each of the resin systems includes at least one of a thermoset material or a thermoplastic material, optionally a fiber reinforcement material, and at least one additive. Thus, the method includes determining a resin system for each of the blade components based on a location and/or function of each blade component in the rotor blade. In addition, the method includes forming each of the blade components of the rotor blade from one of the plurality of resin systems and securing each of the blade components together to form the modular rotor blade.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10533534
    Abstract: The present disclosure is directed to a method for bonding composite blade components of a rotor blade of a wind turbine. The method includes providing a first blade component being constructed of a first composite material. The method also includes providing a second blade component being constructed of a second composite material. Further, the method includes arranging the first and second blade components together at an interface. Another step includes placing one or more layers of a wetted composite material between the first and second blade components at the interface. The method also includes allowing the one or more layers of the wetted composite material at the interface to cure.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso
  • Patent number: 10527023
    Abstract: The present disclosure is directed methods for manufacturing spar caps for wind turbine rotor blades. In certain embodiments, the method includes forming an outer frame or tray of the spar cap via at least one of three-dimensional (3D) pultrusion, thermoforming, or 3D printing. As such, the outer frame has a varying cross-section that corresponds to a varying cross-section of the rotor blade along a span thereof. The method also includes arranging a plurality of structural materials (e.g. layers of pultruded plates) within the pultruded outer frame of the spar cap and infusing the structural materials and the outer frame together via a resin material so as to form the spar cap. The resulting spar cap can then be easily incorporated into conventional rotor blade manufacturing processes and/or welded or bonded to an existing rotor blade.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: January 7, 2020
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10519927
    Abstract: The present disclosure is directed to a shear web for a rotor blade of a wind turbine and a method of manufacturing and assembling same. The rotor blade generally includes an upper shell member having an upper spar cap configured on an internal surface thereof and a lower shell member having a lower spar cap configured on an internal surface thereof. Further, the shear web extends between the spar caps along a longitudinal length of the blade. In addition, the shear web includes first and second outer pultruded layers at least partially encompassing a core material, wherein end portions of the first and second outer pultruded layers form compressed flanges at opposing ends of the shear web.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: December 31, 2019
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Aaron A. Yarbrough, Daniel Alan Hynum, Christopher Daniel Caruso