Patents by Inventor Daniel Caruso

Daniel Caruso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10077758
    Abstract: A pre-cured laminate plate for use within a component of a wind turbine rotor blade may generally include a plate body extending in a thickness direction between a first side and a second side and in a widthwise direction between a first end and a second end. The plate body may define a plate thickness between the first and second sides. The pre-cured laminate plate may also include a plurality of channels formed in the plate body between the first and second ends. Each channel may extend in the thickness direction between a top end that is open along the first side of the plate body and a bottom end that terminates at a location between the first and second sides of the plate body such that the plate body defines a reduced thickness between the bottom end of each channel and the second side of the plate body.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 18, 2018
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso, Donald Joseph Kasperski
  • Patent number: 10071532
    Abstract: The present disclosure is directed to a method of assembling a modular rotor blade of a wind turbine. The method includes identifying a main blade structure, constructed at least in part, from at least one of a thermoset or a thermoplastic material. The method also includes identifying at least one blade segment, constructed at least in part, of a thermoplastic material reinforced with at least one of glass fibers or carbon fibers. Thus, the method also includes securing the at least one blade segment to the main blade structure, e.g. via welding.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 10072632
    Abstract: A spar cap for a rotor blade of a wind turbine may generally include an assembly of pre-cured laminate plates stacked on one top of the other, with the assembly including an outermost pre-cured plate, an innermost pre-cured plate positioned opposite the outermost pre-cured plate and a plurality of intermediate pre-cured plates stacked directly between the outermost and innermost pre-cured plates. The outermost pre-cured plate may be configured to be positioned adjacent to an inner surface of a body shell of the rotor blade. In addition, the outermost pre-cured plate may define a plate thickness that differs from a plate thickness defined by the innermost pre-cured plate by at least 50%.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso
  • Patent number: 10060411
    Abstract: A root assembly for a rotor blade of a wind turbine includes a blade root section having an inner sidewall surface and an outer sidewall surface separated by a radial gap, a plurality of root inserts spaced circumferentially within the radial gap, and a plurality of spacers configured between one or more of the root inserts. Further, each of the root inserts includes at least one bore hole surrounded by a pre-cured or pre-consolidated composite material. In addition, the pultruded spacers are constructed of a pre-cured or pre-consolidated composite material.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: August 28, 2018
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Publication number: 20180238299
    Abstract: The present disclosure is directed to methods for joining rotor blade components using thermoplastic welding.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 23, 2018
    Inventors: James Robert Tobin, Aaron A. Yarbrough, Daniel Alan Hynum, Christopher Daniel Caruso
  • Publication number: 20180238301
    Abstract: The present disclosure is directed to a shear web for a rotor blade of a wind turbine and a method of manufacturing and assembling same. The rotor blade generally includes an upper shell member having an upper spar cap configured on an internal surface thereof and a lower shell member having a lower spar cap configured on an internal surface thereof. Further, the shear web extends between the spar caps along a longitudinal length of the blade. In addition, the shear web includes first and second outer pultruded layers at least partially encompassing a core material, wherein end portions of the first and second outer pultruded layers form compressed flanges at opposing ends of the shear web.
    Type: Application
    Filed: February 20, 2017
    Publication date: August 23, 2018
    Inventors: James Robert Tobin, Aaron A. Yarbrough, Daniel Alan Hynum, Christopher Daniel Caruso
  • Publication number: 20180223798
    Abstract: The present disclosure is directed methods for manufacturing spar caps for wind turbine rotor blades. In certain embodiments, the method includes forming an outer frame or tray of the spar cap via at least one of three-dimensional (3D) pultrusion, thermoforming, or 3D printing. As such, the outer frame has a varying cross-section that corresponds to a varying cross-section of the rotor blade along a span thereof. The method also includes arranging a plurality of structural materials (e.g. layers of pultruded plates) within the pultruded outer frame of the spar cap and infusing the structural materials and the outer frame together via a resin material so as to form the spar cap. The resulting spar cap can then be easily incorporated into conventional rotor blade manufacturing processes and/or welded or bonded to an existing rotor blade.
    Type: Application
    Filed: February 9, 2017
    Publication date: August 9, 2018
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Publication number: 20180223797
    Abstract: The present disclosure is directed methods for manufacturing spar caps for wind turbine rotor blades. In certain embodiments, the method includes forming an outer frame of the spar cap via at least one of three-dimensional (3D) pultrusion, thermoforming, or 3D printing. As such, the outer frame has a varying cross-section that corresponds to a varying cross-section of the rotor blade along a span thereof. The method also includes arranging a plurality of structural materials (e.g. layers of pultruded plates) within the pultruded outer frame of the spar cap and infusing the structural materials and the outer frame together via a resin material so as to form the spar cap. The resulting spar cap can then be easily incorporated into conventional rotor blade manufacturing processes and/or welded or bonded to an existing rotor blade.
    Type: Application
    Filed: February 9, 2017
    Publication date: August 9, 2018
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Publication number: 20180223796
    Abstract: A rotor blade assembly for a wind turbine may include a first blade segment having a first joint end and a second blade segment having a second joint end, with the blade segments being coupled together such that the first and second joint ends are located at or adjacent to a joint interface between the blade segments. The blade assembly may also include a pre-loaded beam extending outwardly from the second blade segment across the joint interface such that the pre-loaded beam is received within the first blade segment. The pre-loaded beam may be compressed between the opposed internal structural components of the first blade segment such that a first engagement interface is defined between a first side of the pre-loaded beam and the first internal structural component and a second engagement interface is defined between an opposed second side of the pre-loaded beam and the second internal structural component.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 9, 2018
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso
  • Publication number: 20180216601
    Abstract: The present disclosure is directed to a method for forming a wind turbine rotor blade. The method includes placing first and second prefabricated skin panels defining a portion of a root section of the wind turbine rotor blade, a pressure side of the wind turbine rotor blade, or a suction side of the wind turbine rotor blade in a mold. The first and second prefabricated skin panels partially overlap to define a connection region. A vacuum bag is placed over the mold. The connection region is infused with a resin.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 2, 2018
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso, Jamie T. Livingston
  • Patent number: 10006436
    Abstract: Rotor blades for a wind turbines include a structural support member disposed internal the rotor blade that extends for at least a portion of a rotor blade span length and an airfoil structure supported by the structural support member, the airfoil structure comprising a shell portion and at least one load-transferring exterior panel. The shell portion and the at least one load-transferring exterior panel combine to form an aerodynamic profile comprising a leading edge opposite a trailing edge and a pressure side opposite a suction side. Moreover, the shell portion and the at least one load-transferring exterior panel are independently connected to the structural support member.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: June 26, 2018
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Edward McBeth Stewart, Aaron Alpheus Yarbrough
  • Patent number: 9981433
    Abstract: The present disclosure is directed methods for modifying molds of rotor blades of a wind turbine. In certain embodiments, the blade mold is constructed, at least in part, of a thermoplastic material optionally reinforced with a fiber material. In one embodiment, the method includes identifying at least one blade mold addition for the mold of the rotor blade and positioning the blade mold addition at a predetermined location of the mold of the rotor blade. Further, the blade mold addition is constructed, at least in part, of a thermoplastic material. Thus, the method includes applying at least one of heat, pressure, or one or more chemicals at an interface of the blade mold addition and the mold so as to join the blade mold addition to the mold. In further embodiments, the methods described herein are also directed repairing thermoplastic blade molds.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 29, 2018
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 9970304
    Abstract: The present disclosure is directed to a root assembly for a rotor blade of a wind turbine and methods of manufacturing same. The root assembly includes a blade root section having an inner sidewall surface and an outer sidewall surface separated by a radial gap, a plurality of root inserts spaced circumferentially within the radial gap, and a plurality of spacers configured between one or more of the root inserts. Further, each of the root inserts includes at least one bushing surrounded by a pre-cured or pre-consolidated composite material. In addition, the spacers are constructed of a pre-cured or pre-consolidated composite material.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: May 15, 2018
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Patent number: 9951750
    Abstract: A rotor blade may generally include a shell forming an outer skin of the blade, with the shell defining a chordwise curvature. The rotor blade may also include a spar cap extending within the shell along a spanwise direction of the blade. The spar cap may be formed from an assembly of pre-cured laminate plates. In addition, the rotor blade may include an interior shelf positioned directly between the shell and the spar cap. The interior shelf may include an outer surface extending adjacent to the shell and an inner surface opposite the outer surface. The outer surface may define a curved profile generally corresponding to a portion of the chordwise curvature of the shell and the inner surface may define a planar surface along which the spar cap extends in a chordwise direction of the blade. The interior shelf may correspond to a pre-fabricated insert for the blade.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: April 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum
  • Patent number: 9951751
    Abstract: A blade segment for a wind turbine rotor blade may generally include a body shell terminating at a joint end. The body shell may include a pressure side and a suction side extending between a leading edge and a trailing edge. The blade segment may also include a plurality of pressure side tubes extending adjacent to the pressure side of the body shell and a plurality of suction side tubes extending adjacent to the suction side of the body shell, with the plurality of pressure side tubes being spaced apart from the plurality of suction side tubes along a flapwise direction of the rotor blade.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso
  • Publication number: 20180058422
    Abstract: The present disclosure is directed to a rotor blade component for a wind turbine. The rotor blade component includes a plurality of pre-cured members arranged in one or more layers. Each of the pre-cured members is constructed of a plurality of fiber materials cured together via a resin material having a first stiffness and at least additional material having a second stiffness. Further, the second stiffness is lower than the first stiffness. As such, the additional low-stiffness material is cured within the resin material so as to increase flexibility of the pre-cured members.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso
  • Patent number: 9897065
    Abstract: The present disclosure is directed to a method for assembling a modular rotor blade of a wind turbine. The method includes providing a pre-formed blade root section and a pre-formed blade tip section of the rotor blade. Further, the blade root section includes one or more spar caps extending in a generally span-wise direction. Another step includes providing at least one pre-formed blade segment of the rotor blade. The method also includes mounting the at least one blade segment around the one or more spar caps of the blade root section, wherein the at least one blade segment includes a chord-wise cross-section having multiple joints, wherein at least one joint is located on at least one of a pressure side surface or a suction side surface. In addition, the method also includes joining the blade tip section to at least one of the one or more spar caps or the at least one blade segment.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Christopher Daniel Caruso, Aaron A. Yarbrough, Daniel Alan Hynum, James Robert Tobin
  • Publication number: 20180045174
    Abstract: A method for balancing segmented rotor blades for a wind turbine may include determining a weight for each of a plurality of blade segments, wherein each blade segment extends between a first end and a second and is configured to form a common spanwise section of a segmented rotor blade between the first and second ends. The method may also include determining an initial static moment for each blade segment based on the weight of the blade segment, wherein the initial static moment of at least one of the blade segments differing from the initial static moments of the remainder of the blade segments. Additionally, the method may include adding mass to each of the blade segments to increase the initial static moment for each blade segment to a predetermined static moment, wherein the predetermined static moment is greater than each of the initial static moments of the blade segments.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 15, 2018
    Inventors: Aaron A. Yarbrough, Donald Joseph Kasperski, Daniel Alan Hynum, Christopher Daniel Caruso
  • Patent number: 9863402
    Abstract: The present subject matter is directed to a method for operating a wind turbine. The method includes calculating one or more blade root loads, e.g. a blade root resultant moment, of at least one rotor blade of the wind turbine. Another step includes estimating a span-wise loading of the rotor blade based at least partially on the one or more blade root loads. The method also includes determining a deformation margin of the rotor blade based at least partially on the span-wise loading and one or more estimated deformations occurring on the rotor blade. Another step includes controlling the wind turbine based on the deformation margin.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: January 9, 2018
    Assignee: General Electric Company
    Inventors: Thomas Franklin Perley, Christopher Daniel Caruso, Aaron Yarbrough
  • Publication number: 20170363063
    Abstract: A jointed rotor blade assembly may include a first blade segment having a first outer shell terminating at a first joint end and a second blade segment coupled to the first blade segment at a blade joint. The second blade segment may include a second outer shell terminating at a second joint end. The outer shells may overlap one another at the blade joint such that an overlapping region is defined between the first and second joint ends. In addition, the first outer shell may be spaced apart from the second outer shell along at least a portion of the overlapping region such that a gap is defined between the outer shells within the overlapping region. Moreover, the rotor blade assembly may include a sealing member positioned between the outer shells within the overlapping region that is configured to allow relative movement between the outer shells at the blade joint.
    Type: Application
    Filed: June 20, 2016
    Publication date: December 21, 2017
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso, Donald Joseph Kasperski, Daniel Alan Hynum