Patents by Inventor Daniel G. Gibson

Daniel G. Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884916
    Abstract: The present invention provides materials and methods useful for error correction of nucleic acid molecules. In one embodiment of the invention, a first plurality of double-stranded nucleic acid molecules having a nucleotide mismatch are fragmented by exposure to a molecule having unidirectional mismatch endonuclease activity. The nucleic acid molecules are cut at the mismatch site or near the mismatch site, leaving a double-stranded nucleic acid molecule having a mismatch at the end or near end of the molecule. The nucleic acid molecule is then exposed to a molecule having unidirectional exonuclease activity to remove the mismatched nucleotide. The missing nucleotides can then be filled in by the action of, e.g., a molecule having DNA polymerase activity. The result is double-stranded nucleic acid molecules with a decreased frequency of nucleotide mismatches.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: January 30, 2024
    Assignee: Telesis Bio Inc.
    Inventors: Daniel G Gibson, Nicky Caiazza, Toby H. Richardson
  • Patent number: 11746321
    Abstract: The invention provides engineered Vibrio sp. organisms that comprise a genetic modification to either or both of the lpxL and/or lpxM genes. The organisms score substantially lower in an in vitro endotoxin assay versus the unmodified or wild type organism. The organisms preserve substantially the growth rate of the corresponding unmodified organisms. The organisms can also have an exogenous nucleic acid cloned in the organism, or an exogenous nucleic acid encoding a protein, polypeptide, or peptide expressed by the organism, and optionally secreted from the organism.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: September 5, 2023
    Assignee: Telesis Bio Inc.
    Inventors: Matthew T Weinstock, Daniel G. Gibson, Daniel Strimling
  • Publication number: 20230151402
    Abstract: The invention provides methods for synthesizing a product DNA molecule of any possible DNA sequence from a universal library of overlapping oligonucleotides. The method involves combining a plurality of the overlapping oligonucleotides in a reaction pool, where the sequences of the plurality of oligonucleotides comprise at least a sub-sequence of the product DNA molecule. The method also involves annealing the plurality of oligonucleotides, performing a ligation step, and performing an amplification step to thereby synthesize a sub-sequence of the product DNA molecule. The invention can be used to synthesize a DNA molecule of any possible sequence from the universal library, which can be accomplished through a hierarchal assembly scheme. In one embodiment the universal library comprises fewer than 10,000 pre-manufactured oligonucleotides that can be synthesized into the any possible DNA sequence. In any embodiment the product DNA molecule has an error rate of less than 1 error per 2,000 nucleotides.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 18, 2023
    Inventors: John E. Gill, Lixia Fu, Sydney Kerr, Michelle Vargas, Daniel G. Gibson
  • Publication number: 20220364134
    Abstract: The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 17, 2022
    Inventors: Daniel G. Gibson, Hamilton O. Smith, Clyde A. Hutchison, Lei Young, J. Craig Venter
  • Patent number: 11408020
    Abstract: The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: August 9, 2022
    Assignee: Codex DNA, Inc.
    Inventors: Daniel G. Gibson, Hamilton O. Smith, Clyde A. Hutchison, Lei Young, J. Craig Venter
  • Publication number: 20210355519
    Abstract: The invention provides methods of synthesizing a product DNA molecule having a desired and/or defined sequence. The methods involve annealing at least one long oligonucleotide and at least one short oligonucleotide to at least one anchor strand having a sequence at least partially complementary to the at least one long and at least one short oligonucleotide. After annealing, at least one long oligonucleotide bound to an anchor strand abuts at least one short oligonucleotide bound to the same anchor strand. The anchor strand has one or more non-standard nucleotides, and optionally one or more degenerate nucleotides. The method involves ligating the abutting at least one long oligonucleotide and at least one short oligonucleotide to form a dsDNA molecule. The invention also provides methods of synthesizing DNA molecules by assembling oligonucleotide members of a library that contains less than 20,000 members that can be assembled into all possible DNA sequences.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 18, 2021
    Inventors: Krishna Kannan, John E. Gill, Daniel G. Gibson, Lixia Fu
  • Publication number: 20210340598
    Abstract: The invention provides compositions and methods for assembling a DNA molecule having a desired sequence. The methods involve contacting a DNA polymerase, dNTPs, and a plurality of pairs of oligonucleotides. The oligonucleotides of a pair have a portion of the desired sequence, and an internal sequence that overlaps and is complementary to an internal sequence of the other oligonucleotide of the pair, and, when arranged in order, they have at least a portion of the desired sequence. The oligonucleotides also have a 3? or a 5? primer binding sequence having a binding site for a primer. The oligonucleotides that correspond to the end oligonucleotides of the desired sequence also have a universal 3? flanking sequence and a universal 5? flanking sequence, respectively.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: John E. Gill, Daniel G. Gibson, Lixia Fu
  • Publication number: 20210284954
    Abstract: The invention provides engineered Vibrio sp. organisms that comprise a genetic modification to either or both of the lpxL and/or lpxM genes. The organisms score substantially lower in an in vitro endotoxin assay versus the unmodified or wild type organism. The organisms preserve substantially the growth rate of the corresponding unmodified organisms. The organisms can also have an exogenous nucleic acid cloned in the organism, or an exogenous nucleic acid encoding a protein, polypeptide, or peptide expressed by the organism, and optionally secreted from the organism.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 16, 2021
    Inventors: Matthew T Weinstock, Daniel G. Gibson, Daniel Strimling
  • Publication number: 20210277446
    Abstract: The invention provides methods of assembling a DNA molecule having a desired sequence. The methods involve contacting a DNA ligase with a plurality of short oligonucleotides to be assembled and performing the ligase chain reaction to thereby generate a set of polynucleotides. Oligonucleotides in the plurality overlap with and are complementary to a sequence of at least one other oligonucleotide in the plurality, and at least 50% of the oligonucleotides in the plurality are 6-30 nucleotides in length. The set of polynucleotides produced are contacted with a DNA polymerase and dNTPs in a mixture to join the set of polynucleotides and thereby create a DNA molecule having a desired sequence by polymerase chain assembly. The method allows for production of oligonucleotides of any length having very high sequence fidelity to a desired sequence.
    Type: Application
    Filed: February 25, 2021
    Publication date: September 9, 2021
    Inventors: John E. Gill, Lixia Fu, Daniel G. Gibson
  • Publication number: 20210254046
    Abstract: Methods for generating synthetic genomes, for example synthetic genomes having desired properties or viable genomes of reduced size, are disclosed. Also disclosed are synthetic genomes produced by the methods disclosed herein and synthetic cells containing the synthetic genomes disclosed herein.
    Type: Application
    Filed: March 12, 2021
    Publication date: August 19, 2021
    Inventors: Clyde A. Hutchison, Ray-Yuan Chuang, Vladimir N. Noskov, Bogumil J. Karas, Kim S. Wise, Hamilton O. Smith, John I. Glass, Chuck Merryman, Daniel G. Gibson, J. Craig Venter, Krishna Kannan, Lin Ding
  • Patent number: 11085037
    Abstract: Methods for generating synthetic genomes, for example synthetic genomes having desired properties or viable genomes of reduced size, are disclosed. Also disclosed are synthetic genomes produced by the methods disclosed herein and synthetic cells containing the synthetic genomes disclosed herein.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: August 10, 2021
    Assignee: Codex DNA, Inc.
    Inventors: Clyde A. Hutchison, III, Ray-Yuan Chuang, Vladimir N. Noskov, Bogumil J. Karas, Kim S. Wise, Hamilton O. Smith, John I. Glass, Chuck Merryman, Daniel G. Gibson, J. Craig Venter, Krishna Kannan, Lin Ding
  • Patent number: 11060137
    Abstract: The invention provides compositions and methods for assembling a DNA molecule having a desired sequence. The methods involve contacting a DNA polymerase, dNTPs, and a plurality of pairs of oligonucleotides. The oligonucleotides of a pair have a portion of the desired sequence, and an internal sequence that overlaps and is complementary to an internal sequence of the other oligonucleotide of the pair, and, when arranged in order, they have at least a portion of the desired sequence. The oligonucleotides also have a 3? or a 5? primer binding sequence having a binding site for a primer. The oligonucleotides that correspond to the end oligonucleotides of the desired sequence also have a universal 3? flanking sequence and a universal 5? flanking sequence, respectively.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: July 13, 2021
    Assignee: Codex DNA, Inc.
    Inventors: John E. Gill, Daniel G. Gibson, Lixia Fu
  • Patent number: 10968496
    Abstract: The invention provides engineered Vibrio sp. organisms that comprise a genetic modification to either or both of the lpxL and/or lpxM genes. The organisms score substantially lower in an in vitro endotoxin assay versus the unmodified or wild type organism. The organisms preserve substantially the growth rate of the corresponding unmodified organisms. The organisms can also have an exogenous nucleic acid cloned in the organism, or an exogenous nucleic acid encoding a protein, polypeptide, or peptide expressed by the organism, and optionally secreted from the organism.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 6, 2021
    Assignee: Codex DNA, Inc.
    Inventors: Matthew T Weinstock, Daniel G. Gibson, Daniel Strimling
  • Publication number: 20200332286
    Abstract: The present invention provides materials and methods useful for error correction of nucleic acid molecules. In one embodiment of the invention, a first plurality of double-stranded nucleic acid molecules having a nucleotide mismatch are fragmented by exposure to a molecule having unidirectional mismatch endonuclease activity. The nucleic acid molecules are cut at the mismatch site or near the mismatch site, leaving a double-stranded nucleic acid molecule having a mismatch at the end or near end of the molecule. The nucleic acid molecule is then exposed to a molecule having unidirectional exonuclease activity to remove the mismatched nucleotide. The missing nucleotides can then be filled in by the action of, e.g., a molecule having DNA polymerase activity. The result is double-stranded nucleic acid molecules with a decreased frequency of nucleotide mismatches.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Inventors: Daniel G. Gibson, Nicky Caiazza, Toby H. Richardson
  • Patent number: 10704041
    Abstract: The present invention provides materials and methods useful for error correction of nucleic acid molecules. In one embodiment of the invention, a first plurality of double-stranded nucleic acid molecules having a nucleotide mismatch are fragmented by exposure to a molecule having unidirectional mismatch endonuclease activity. The nucleic acid molecules are cut at the mismatch site or near the mismatch site, leaving a double-stranded nucleic acid molecule having a mismatch at the end or near end of the molecule. The nucleic acid molecule is then exposed to a molecule having unidirectional exonuclease activity to remove the mismatched nucleotide. The missing nucleotides can then be filled in by the action of, e.g., a molecule having DNA polymerase activity. The result is double-stranded nucleic acid molecules with a decreased frequency of nucleotide mismatches.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: July 7, 2020
    Assignee: Codex DNA, Inc.
    Inventors: Daniel G. Gibson, Nicky Caiazza, Toby H. Richardson
  • Patent number: 10626429
    Abstract: The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: April 21, 2020
    Assignee: SGI-DNA, Inc.
    Inventors: Daniel G. Gibson, Hamilton O. Smith, Clyde A. Hutchison, Lei Young, J. Craig Venter
  • Publication number: 20190376103
    Abstract: The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
    Type: Application
    Filed: July 31, 2019
    Publication date: December 12, 2019
    Inventors: Daniel G. Gibson, Hamilton O. Smith, Clyde A. Hutchison, Lei Young, J. Craig Venter
  • Publication number: 20190241921
    Abstract: The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Daniel G. Gibson, Hamilton O. Smith, Clyde A. Hutchison, Lei Young, J. Craig Venter
  • Publication number: 20190177759
    Abstract: The present invention discloses methods for assembling a nucleic acid molecule from a set of overlapping oligonucleotides. The method involves contacting a set of overlapping oligonucleotides with a DNA polymerase, a mixture of dNTPs, and a crowding agent to form an assembly mixture. In one embodiment the crowding agent is polyethylene glycol (PEG). The presence of the crowding agent facilitates the nucleic acid assembly process of the invention. The assembly mixture is then subjected to multiple cycles, each cycle comprising an annealing phase, an extension phase, and a denaturation phase, and the desired nucleic acid molecule is thereby assembled. In some embodiments one or more of the phases are time varied.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 13, 2019
    Inventors: ZHIQING Qi, Jun Urano, Nicky C. Caiazza, Daniel G. Gibson
  • Publication number: 20190153554
    Abstract: The invention provides engineered Vibrio sp. organisms that comprise a genetic modification to either or both of the lpxL and/or lpxM genes. The organisms score substantially lower in an in vitro endotoxin assay versus the unmodified or wild type organism. The organisms preserve substantially the growth rate of the corresponding unmodified organisms. The organisms can also have an exogenous nucleic acid cloned in the organism, or an exogenous nucleic acid encoding a protein, polypeptide, or peptide expressed by the organism, and optionally secreted from the organism.
    Type: Application
    Filed: October 8, 2018
    Publication date: May 23, 2019
    Inventors: Matthew T Weinstock, Daniel G. Gibson, Daniel Strimling