Patents by Inventor Daniel J. Mumaw

Daniel J. Mumaw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210307866
    Abstract: A method for generating and updating a three-dimensional representation of a surgical site based on imaging data from an imaging system is disclosed. The method comprises the steps of generating a first image of the surgical site based on structured electromagnetic radiation emitted from the imaging system, receiving a second image of the surgical site, aligning the first image and the second image, generating a three-dimensional representation of the surgical site based on the first image and the second image as aligned, displaying the three-dimensional representation on a display screen, receiving a user selection to manipulate the three-dimensional representation, and updating the three-dimensional representation as displayed on the display screen from a first state to a second state according to the received user selection.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 7, 2021
    Inventors: Frederick E. Shelton, IV, Andrew C. Deck, Jason L. Harris, Chad E. Eckert, Daniel J. Mumaw, Kevin M. Fiebig, Sarah A. Worthington
  • Publication number: 20210307870
    Abstract: A method for generating and updating a three-dimensional representation of a surgical site based on imaging data from an imaging system is disclosed. The method comprises the steps of generating a first image of the surgical site based on structured electromagnetic radiation emitted from the imaging system, receiving a second image of the surgical site, aligning the first image and the second image, generating a three-dimensional representation of the surgical site based on the first image and the second image as aligned, displaying the three-dimensional representation on a display screen, receiving a user selection to manipulate the three-dimensional representation, and updating the three-dimensional representation as displayed on the display screen from a first state to a second state according to the received user selection.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 7, 2021
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Daniel J. Mumaw, Kevin M. Fiebig
  • Publication number: 20210307868
    Abstract: A method for generating and updating a three-dimensional representation of a surgical site based on imaging data from an imaging system is disclosed. The method comprises the steps of generating a first image of the surgical site based on structured electromagnetic radiation emitted from the imaging system, receiving a second image of the surgical site, aligning the first image and the second image, generating a three-dimensional representation of the surgical site based on the first image and the second image as aligned, displaying the three-dimensional representation on a display screen, receiving a user selection to manipulate the three-dimensional representation, and updating the three-dimensional representation as displayed on the display screen from a first state to a second state according to the received user selection.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 7, 2021
    Inventors: Frederick E. Shelton, IV, Andrew C. Deck, Jason L. Harris, Chad E. Eckert, Daniel J. Mumaw, Kevin M. Fiebig, Sarah A. Worthington
  • Publication number: 20210275251
    Abstract: An automated surgical hub system is configured to receive first image data of a surgical site. The hub system controls at least one illumination source of the surgical site in a first manner and receives second image data of the site under illumination by the source in the first manner. The hub system calculates a three-dimensional model of the surgical site based on the second image data and integrates the three-dimensional model with the first image data.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 9, 2021
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Kevin M. Fiebig, Daniel J. Mumaw
  • Publication number: 20210275252
    Abstract: A surgical visualization system includes multiple light sources, at least one optical sensor, at least one display device, and a controller. The controller is configured to control at least one light source to illuminate surgical tissue in a first manner, and control the optical sensor to receive an image from the surgical tissue illuminated in the first manner. The controller calculates a three-dimensional image from the tissue illuminated in the first manner. The controller is configured to control at the least one light source to illuminate surgical tissue in a second manner, and control the optical sensor to receive an image from the surgical tissue illuminated in the second manner. The controller calculates one or more subsurface critical anatomic structures from the tissue illuminated in the second manner and combines the display of the three-dimensional image and the anatomic structures on the at least one display device.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 9, 2021
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Kevin M. Fiebig, Daniel J. Mumaw
  • Publication number: 20210212792
    Abstract: A surgical visualization system that can include a structured light emitter, a spectral light emitter, an image sensor, and a control circuit is disclosed herein. The structured light emitter can emit a structured pattern of electromagnetic radiation onto an anatomical structure. The spectral light emitter can emit electromagnetic radiation including a plurality of wavelengths. At least one of the wavelengths can penetrate a portion of the anatomical structure and reflect off a subject tissue. The image sensor can detect the structured pattern of electromagnetic radiation reflected off the anatomical structure and the at least one wavelength reflected off the subject tissue. The control circuit can receive signals from the image sensor, construct a model of the anatomical structure, detect a location of the subject tissue, and determine a margin about the subject tissue, based on at least one signal received from the image sensor.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Kevin M. Fiebig, Daniel J. Mumaw
  • Publication number: 20210205019
    Abstract: A surgical system for use in a surgical procedure is disclosed. The surgical system includes at least one imaging device and a control circuit configured to identify an anatomical organ targeted by the surgical procedure, generate a virtual three-dimensional (3D) construct of at least a portion of the anatomical organ based on visualization data from the at least one imaging device, identify anatomical structures relevant to the surgical procedure from the visualization data from the at least one imaging device, couple the anatomical structures to the virtual 3D construct, and overlay onto the virtual 3D construct a layout plan of the surgical procedure determined based on the anatomical structures.
    Type: Application
    Filed: March 23, 2021
    Publication date: July 8, 2021
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Kevin M. Fiebig, Daniel J. Mumaw
  • Publication number: 20210196382
    Abstract: A surgical system for use with a surgical instrument in a surgical procedure performed on an anatomical organ is disclosed. The surgical system comprises at least one imaging device and a control circuit configured to identify anatomical structures relevant to the surgical procedure from visualization data from the at least one imaging device, propose a surgical resection path for removing a portion of the anatomical organ by the surgical instrument, and present parameters of the surgical instrument in accordance with the surgical resection path. The surgical resection path is determined based on the anatomical structures.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 1, 2021
    Inventors: Daniel J. Mumaw, Jason L. Harris, Frederick E. Shelton, IV
  • Publication number: 20210196343
    Abstract: A surgical system comprising a generator and a surgical instrument configured to receive power from the generator is disclosed. The surgical instrument comprises a housing, a shaft defining a longitudinal axis, an end effector, and an internal charge accumulator. The housing comprises a motor. The end effector is operably responsive to actuations from the electric motor, transitionable between an open and closed configuration, and rotatable about an articulation axis transverse to the longitudinal axis. The generator is incapable of supplying a sufficient power directly to the motor to perform the actuations. The internal charge accumulator is in electric communication with the generator and supplies power to the motor. The internal charge accumulator is chargeable by the generator to a threshold value at a charge rate dependent on a charge level of the internal charge accumulator. The charge rate is independent of a charge expenditure by the surgical instrument.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 1, 2021
    Inventors: Frederick E. Shelton, IV, Daniel J. Mumaw, Kevin M. Fiebig
  • Publication number: 20210196344
    Abstract: A surgical system comprising a surgical hub, a surgical instrument, a generator configured to energize an end effector; and a smoke evacuation system configured to remove smoke from a surgical site is disclosed. The surgical instrument comprises the end effector. A control command is passed directly from the surgical hub to the surgical instrument. The surgical instrument is configured to pass the control command received from the surgical hub to the generator and the smoke evacuation system in a daisy-chain manner.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 1, 2021
    Inventors: Frederick E. Shelton, IV, Daniel J. Mumaw, Chad E. Eckert, Kevin M. Fiebig, Taylor W. Aronhalt
  • Publication number: 20210196385
    Abstract: A surgical system for use in a surgical procedure is disclosed. The surgical system includes at least one imaging device and a control circuit configured to identify an anatomical organ targeted by the surgical procedure, generate a virtual three-dimensional (3D) construct of at least a portion of the anatomical organ based on visualization data from the at least one imaging device, identify anatomical structures relevant to the surgical procedure from the visualization data from the at least one imaging device, couple the anatomical structures to the virtual 3D construct, and overlay onto the virtual 3D construct a layout plan of the surgical procedure determined based on the anatomical structures.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 1, 2021
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Kevin M. Fiebig, Daniel J. Mumaw
  • Publication number: 20210196425
    Abstract: A method for generating and updating a three-dimensional representation of a surgical site based on imaging data from an imaging system is disclosed. The method comprises the steps of generating a first image of the surgical site based on structured electromagnetic radiation emitted from the imaging system, receiving a second image of the surgical site, aligning the first image and the second image, generating a three-dimensional representation of the surgical site based on the first image and the second image as aligned, displaying the three-dimensional representation on a display screen, receiving a user selection to manipulate the three-dimensional representation, and updating the three-dimensional representation as displayed on the display screen from a first state to a second state according to the received user selection.
    Type: Application
    Filed: December 30, 2019
    Publication date: July 1, 2021
    Inventors: Frederick E. Shelton, IV, Andrew C. Deck, Jason L. Harris, Chad E. Eckert, Daniel J. Mumaw, Kevin M. Fiebig, Sarah A. Worthington
  • Patent number: 11045197
    Abstract: A surgical device for clipping tissue is disclosed. The surgical device comprises a housing, a shaft extending from the housing, an end effector extending from the shaft, a motor, a rotary input configured to rotate in response to the motor, and a clip magazine comprising a plurality of clips. The shaft defines a shaft axis. The clip magazine is operably connected to the rotary input. The clip magazine is movable in a first direction through a clip feed stroke in response to the rotation of the rotary input. The clip magazine is movable in a second direction in response to the rotation of the rotary input. The second direction is transverse to the first direction.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: June 29, 2021
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Daniel J. Mumaw, Jason L. Harris, Gregory J. Bakos
  • Publication number: 20210186596
    Abstract: A surgical instrument includes a rotatable electrical coupling assembly having a first part and a second part that electrically couple and rotate relative to each other. The second part is carried by and rotates with a tube collar coupled to a transducer. A portion of the transducer is inserted through an aperture of the second part, but does not contact the second part. The first part of the assembly may electrically couple to the second part via pogo pins, brush contacts, or ball bearings. Alternatively, the first part may comprise conductive channels formed in the casing. The second part may comprise a rotatable drum with a conductive trace. In some versions, one or more components may comprise MID components. In another version, the rotatable electrical coupling assembly comprises a rotatable PC board and brush contact. Further still, a circuit board may be provided with the transducer inside a transducer casing.
    Type: Application
    Filed: February 4, 2021
    Publication date: June 24, 2021
    Inventors: Daniel J. Mumaw, Shawn D. Bialczak, Sora Rhee, Craig T. Davis, John A. Weed, III, Kip M. Rupp, Foster B. Stulen, Timothy G. Dietz, Kevin L. Houser
  • Patent number: 11006955
    Abstract: An end effector for use with an adapter for a surgical instrument. The end effector includes first and second jaws that are pivotally coupled to each other and are movable between open and closed positions by a dynamic clamping assembly that is selectively movable between a starting position and an ending position relative to the first and second jaws. A first positive jaw opening feature is provided on the first jaw and a second positive jaw opening feature is provided on the second jaw. The first and second positive jaw opening features are configured for contact by the dynamic clamping assembly as the dynamic clamping assembly is moved in an opening direction to apply opening motions to the first and second jaws. The first and second positive jaw opening features may be longitudinally offset from each other.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: May 18, 2021
    Assignee: Ethicon LLC
    Inventors: Frederick E. Shelton, IV, Daniel J. Mumaw, Jason L. Harris, Jerome R. Morgan
  • Patent number: 10959769
    Abstract: A surgical instrument includes a rotatable electrical coupling assembly having a first part and a second part that electrically couple and rotate relative to each other. The second part is carried by and rotates with a tube collar coupled to a transducer. A portion of the transducer is inserted through an aperture of the second part, but does not contact the second part. The first part of the assembly may electrically couple to the second part via pogo pins, brush contacts, or ball bearings. Alternatively, the first part may comprise conductive channels formed in the casing. The second part may comprise a rotatable drum with a conductive trace. In some versions, one or more components may comprise MID components. In another version, the rotatable electrical coupling assembly comprises a rotatable PC board and brush contact. Further still, a circuit board may be provided with the transducer inside a transducer casing.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: March 30, 2021
    Assignee: Ethicon LLC
    Inventors: Daniel J. Mumaw, Shawn D. Bialczak, Sora Rhee, Craig T. Davis, John A. Weed, III, Kip M. Rupp, Foster B. Stulen, Timothy G. Dietz, Kevin L. Houser
  • Publication number: 20210045742
    Abstract: Methods for operating a surgical end effector that includes first and second jaws that are pivotally coupled together and are selectively movable between a fully open position and fully closed position. At least one method includes moving a dynamic clamping assembly through a closure stroke to apply a closure motion to the first and second jaws to move the first and second jaws from the fully open position to the fully closed position. A method also includes moving the dynamic clamping assembly through a firing stroke to perform a surgical function until the dynamic clamping assembly reaches an ending position within the closed first and second jaws. A method also includes moving the dynamic clamping assembly in direction configured to contact at least one positive jaw opening feature on at least one of the first and second jaws with to move the first and second jaws to the fully open position.
    Type: Application
    Filed: September 4, 2020
    Publication date: February 18, 2021
    Inventors: Frederick E. Shelton, IV, Daniel J. Mumaw, Jason L. Harris, Jerome R. Morgan
  • Publication number: 20210022724
    Abstract: Various methods and devices are provided for allowing multiple surgical instruments to be inserted into sealing elements of a single surgical access device. The sealing elements can be movable along predefined pathways within the device to allow surgical instruments inserted through the sealing elements to be moved laterally, rotationally, angularly, and vertically relative to a central longitudinal axis of the device for ease of manipulation within a patient's body while maintaining insufflation.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Inventors: Mark S. Ortiz, David T. Martin, Matthew C. Miller, Mark J. Reese, Wells D. Haberstich, Carl Shurtleff, Charles J. Scheib, Frederick E. Shelton, IV, Jerome R. Morgan, Daniel H. Duke, Daniel J. Mumaw, Gregory W. Johnson, Kevin L. Houser
  • Publication number: 20210000462
    Abstract: Bowel retractor devices. In various forms, the bowel retractor devices are configurable from a collapsed position wherein the retractor may be inserted through a trocar cannula or other opening in a patient's body to a second expanded position wherein at least a portion of the patient's bowel may be advantageously supported in a desired position.
    Type: Application
    Filed: March 16, 2020
    Publication date: January 7, 2021
    Inventors: Tamara Widenhouse, Andrew Yoo, Frederick E. Shelton, IV, Katherine J. Schmid, Aron O. Zingman, Richard W. Timm, Jacob S. Gee, Steven G. Hall, Daniel J. Mumaw, Taylor W. Aronhalt, Gregory W. Johnson, Michael J. Vendely, Andrew T. Beckman, James R. Janszen
  • Publication number: 20200405316
    Abstract: A surgical device for applying clips is disclosed including a cartridge, an RFID tag, and a controller. The cartridge includes a plurality of clips. A crimping drive is configured to move a first jaw and a second jaw to a closed position during a crimping stroke. One of the plurality of clips is crimped around tissue during the crimping stroke. Stored data on the RFID tag relates to an identifying characteristic of at least one of the plurality of clips within the cartridge. An RFID scanner is configured to receive a first signal from the RFID tag in response to an interrogation signal. The first signal includes the stored data on the RFID tag. A controller in communication with the RFID scanner is configured to compare the stored data to a set of compatibility data and vary an operational parameter of the surgical device based on the stored data.
    Type: Application
    Filed: June 30, 2019
    Publication date: December 31, 2020
    Inventors: Frederick E. Shelton, IV, Daniel J. Mumaw