Patents by Inventor Daniel J. Schmidt

Daniel J. Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190358947
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
  • Publication number: 20190345339
    Abstract: A method of making a coatable composition includes: providing a first composition comprising silica nanoparticles dispersed in an aqueous liquid vehicle, wherein the first composition has a pH greater than 6; acidifying the first composition to a pH of less than or equal to 4 using inorganic acid to provide a second composition; and dissolving at least one metal compound in the second composition to form the coatable composition. The silica nanoparticles have a polymodal particle size distribution, wherein the polymodal particle size distribution comprises a first mode having a first particle size in the range of from 8 to 35 nanometers, wherein the polymodal particle size distribution comprises a second mode having a second particle size in the range of from 2 to 20 nanometers, wherein the first particle size is greater than the second particle size. Coatable compositions, antistatic compositions, preparable by the method are also disclosed.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: Naiyong Jing, Xuan Jiang, Justin A. Riddle, Fuxia Sun, Daniel J. Schmidt
  • Patent number: 10414145
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films (100) may include a plurality of co-extensive electrical protolayers (22, 23, 24) forming an electrical protolayer stack (20), at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: September 17, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
  • Patent number: 10400109
    Abstract: A method of making a coatable composition includes: providing a first composition comprising silica nanoparticles dispersed in an aqueous liquid vehicle, wherein the first composition has a pH greater than 6; acidifying the first composition to a pH of less than or equal to 4 using inorganic acid to provide a second composition; and dissolving at least one metal compound in the second composition to form the coatable composition. The silica nanoparticles have a polymodal particle size distribution, wherein the polymodal particle size distribution comprises a first mode having a first particle size in the range of from 8 to 35 nanometers, wherein the polymodal particle size distribution comprises a second mode having a second particle size in the range of from 2 to 20 nanometers, wherein the first particle size is greater than the second particle size. Coatable compositions, antistatic compositions, preparable by the method are also disclosed.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: September 3, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Xuan Jiang, Justin A. Riddle, Fuxia Sun, Daniel J. Schmidt
  • Publication number: 20190245010
    Abstract: Display stacks are disclosed. More specifically, display stacks including an emissive display including a plurality of organic light emitting diodes, a circular polarizer, and a color correction film disposed between the emissive display and the circular polarizer are disclosed. The color correction film includes a plurality of microlayers and may provide reduced color shift performance between on and off-axis viewing angles compared to display stacks not including the color correction film.
    Type: Application
    Filed: August 30, 2017
    Publication date: August 8, 2019
    Inventors: Gilles J. Benoit, Daniel J. Schmidt, Stephen P. Maki
  • Patent number: 10365415
    Abstract: An article is described comprising a substrate and a plurality of layers deposited by layer-by-layer self-assembly disposed on the substrate. A portion of the layers comprise inorganic oxide nanoparticles comprising a phosphorous-containing surface treatment. Also described is an article comprising a bi-layer, the bi-layer comprises a monolayer of a polycation and a monolayer of a polyanion. The polyanion comprises inorganic oxide nanoparticles comprising a phosphorous-containing surface treatment. The polycations may be a polyelectrolyte or inorganic oxide nanoparticles.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 30, 2019
    Assignee: 3M Innovative Properties Company
    Inventor: Daniel J. Schmidt
  • Publication number: 20190137669
    Abstract: An optical filter including a polarizer and a visible light blocking filter is described. The polarizer is configured to transmit at least 60 percent of light in a first infrared wavelength range that is incident on the polarizer at normal incidence in a first polarization state, to transmit less than 30 percent of light in a second infrared wavelength that is incident on the polarizer at normal incidence in a second polarization state orthogonal to the first polarization state, and to transmit less than 30 percent of light in a third infrared wavelength range that is incident on the polarizer with a 50 degree angle of incidence in the second polarization state. The visible light blocking filter configured to transmit at least 60 percent of light in the first infrared wavelength range at normal incidence in the first polarization state.
    Type: Application
    Filed: May 30, 2017
    Publication date: May 9, 2019
    Inventors: John A. Wheatley, Gilles J. Benoit, Todd A. Ballen, Kenneth L. Smith, Guanglei Du, Edward J. Kivel, Rolf W. Biernath, Jordan D. Whitney, Daniel J. Schmidt
  • Publication number: 20190015950
    Abstract: Provided are abrasive articles that include a plurality of layers, in the following order: a backing; an abrasive layer; and a supersize coat. The supersize coat contains a metal salt of a long-chain fatty acid and clay particles dispersed therein. Advantageously, the clay particles enhance the optical clarity of the supersize coat, allowing printed abrasive articles to be made with thicker supersize coatings. The addition of clay was also found to improve cut performance of the abrasive article relative to articles in which the clay particles are absent.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 17, 2019
    Inventors: Adam J. Meuler, Daniel J. Schmidt, Yugeun P. Yang, Paul D. Graham, David A. Nettleship, Philip S. Hill
  • Publication number: 20190001467
    Abstract: An abrasive article is provided which comprises a plurality of layers in the following order: a backing; an abrasive layer; a primer layer comprising clay particles, wherein the clay particles are agglomerated and form a layer; and a supersize coat comprising a metal salt of a long-chain fatty acid. The addition of the aforementioned primer layer can significantly reduce loading of swarf and improve both the cut and expected lifetime of the abrasive article.
    Type: Application
    Filed: December 29, 2016
    Publication date: January 3, 2019
    Inventors: Adam J. Meuler, Daniel J. Schmidt, Yugeun P. Yang, Paul D. Graham, David A. Nettleship, Philip S. Hill
  • Patent number: 10072333
    Abstract: A method of coating a plurality of sheets. A fluid is forced through gaps in the plurality of sheets. The fluid has a substantially plug flow profile and the fluid deposits a coating on at least one surface of the plurality of sheets in a self-limiting deposition process.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: September 11, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Andrew J. Ouderkirk, Nicholas T. Gabriel, Max Powers, Bill H. Dodge, Timothy J. Nevitt, Daniel J. Schmidt, James R. Miller, Robert R. Kieschke, Erin A. McDowell, Kelly S. Johnson
  • Publication number: 20180248149
    Abstract: A barrier film construction comprises an ultra-barrier film and a barrier adhesive. The adhesive layer comprises a barrier adhesive composition comprising a resin system and organically modified nanoclay; wherein the resin system comprises a first polyisobutylene resin having a viscosity average molecular weight of about 100,000 to about 1,200,000 g/mol and tackifier.
    Type: Application
    Filed: August 15, 2016
    Publication date: August 30, 2018
    Inventors: Jacob P. JOHNSON, Fred B. MCCORMICK, Adam J. MEULER, Richard J. POKORNY, Daniel J. SCHMIDT
  • Publication number: 20180237665
    Abstract: A barrier adhesive composition comprising a resin system and organically modified nanoclay. The resin system comprises (a) a first polyisobutylene resin having a viscosity average molecular weight of about 300,000 to about 500,000 g/mol, (b) a second polyisobutylene resin having a viscosity average molecular of about 700,000 to about 900,000 g/mol and (c) tackifier.
    Type: Application
    Filed: August 15, 2016
    Publication date: August 23, 2018
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jacob P. JOHNSON, Fred B. MCCORMICK, Adam J. MEULER, Richard J. POKORNY, Daniel J. SCHMIDT
  • Patent number: 10054724
    Abstract: An exposed lens retroreflective article (100), transfer articles comprising same, and methods of making same. The retroreflective article can include a binder layer (114); a layer of transparent microspheres (108) partially embedded in the binder layer; and reflective layer (110) disposed between the binder layer and the microspheres. The reflective layer (110) can include a dielectric mirror, which can include a first stack (115) and a second stack (111) positioned in planar contact with the first stack, wherein each of the first stack and the second stack comprises at least one bilayer (119), wherein each bilayer comprises a first material with a first bonding group and a second material with a complementary second bonding group. The transfer article can include the retroreflective article and a carrier web. The method can include partially embedding transparent microspheres in a carrier web; applying the reflective layer to the microspheres, and applying a binder layer composition to the reflective layer.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: August 21, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. McCoy, Daniel J. Schmidt, Shri Niwas, Ying Xia
  • Patent number: 9902869
    Abstract: Methods of protecting a substrate from light-induced degradation are described. The methods comprise providing a substrate and disposing onto the substrate a plurality of layers deposited by layer-by-layer self-assembly. At least a portion of the layers comprise an organic light absorbing compound, an organic light stabilizing compound, or a combination thereof dispersed within a polyelectrolyte. Also described are articles comprising a substrate and a plurality of layers deposited by layer-by-layer self-assembly wherein at least a portion of the layers comprise an organic light absorbing compound, an organic light stabilizing compound, or a combination thereof dispersed within a polyelectrolyte. Random copolymers suitable for use in the method and articles are also described.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: February 27, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Daniel J. Schmidt, Richard S. Buckanin, Timothy J. Hebrink, James R. Miller
  • Patent number: 9829604
    Abstract: Methods of making a multilayer optical film are described. In one embodiment, the method comprises providing a multilayer optical film and disposing onto the multilayer optical film a plurality of layers deposited by layer-by-layer self-assembly of nanoparticles, polymers, and combinations thereof. The multilayer optical film typically comprises a plurality of alternating polymeric layers of a low refractive index layer and a high refractive index layer that reflects at least one bandwidth of electromagnetic radiation ranging from ultraviolet to near infrared. Multilayer optical film articles are described comprising a plurality of layers disposed onto the multilayer optical film, wherein the plurality of layers comprises layer-by-layer self-assembled nanoparticles, polymers, and combinations thereof.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: November 28, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Schmidt, James R. Miller, Timothy J. Hebrink, Mark B. O'Neill
  • Patent number: 9776384
    Abstract: Inorganic multilayer lamination transfer films, methods of forming these lamination transfer films, and methods of using these lamination transfer films. These inorganic multilayer lamination transfer films can have alternating layers including inorganic nanoparticles, sacrificial materials, and optionally inorganic precursors that can be densified to form an inorganic optical stack. Receptor substrates, such as glass or metal, are laminated to the multilayer lamination transfer films.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: October 3, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Mark J. Pellerite, Robert F. Kamrath, Stephen A. Johnson, Terry O. Collier, Haefa Mansour
  • Publication number: 20170276844
    Abstract: An exposed lens retroreflective article (100), transfer articles comprising same, and methods of making same. The retroreflective article can include a binder layer (114); a layer of transparent microspheres (108) partially embedded in the binder layer; and reflective layer (110) disposed between the binder layer and the microspheres. The reflective layer (110) can include a dielectric mirror, which can include a first stack (115) and a second stack (111) positioned in planar contact with the first stack, wherein each of the first stack and the second stack comprises at least one bilayer (119), wherein each bilayer comprises a first material with a first bonding group and a second material with a complementary second bonding group. The transfer article can include the retroreflective article and a carrier web. The method can include partially embedding transparent microspheres in a carrier web; applying the reflective layer to the microspheres, and applying a binder layer composition to the reflective layer.
    Type: Application
    Filed: April 30, 2015
    Publication date: September 28, 2017
    Inventors: Michael A. McCoy, Daniel J. Schmidt, Shri Niwas, Ying Xia
  • Publication number: 20170239931
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films (100) may include a plurality of co-extensive electrical protolayers (22, 23, 24) forming an electrical protolayer stack (20), at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
    Type: Application
    Filed: August 26, 2015
    Publication date: August 24, 2017
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
  • Publication number: 20170190161
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an inorganic optical stack are disclosed.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 6, 2017
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Mark J. Pellerite, Robert F. Kamrath, Stephen A. Johnson, Terry O. Collier, Haefa Mansour
  • Patent number: 9586385
    Abstract: The present disclosure relates to inorganic multilayer lamination transfer films, methods of forming these lamination transfer films and methods of using these lamination transfer films. These inorganic multilayer lamination transfer films can have alternating layers including inorganic nanoparticles, sacrificial materials and optionally inorganic precursors that can be densified to form an inorganic optical stack.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 7, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Mark J. Pellerite, Robert F. Kamrath, Stephen A. Johnson, Terry O. Collier, Haefa Mansour