Patents by Inventor Daniel Lee Diehl

Daniel Lee Diehl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12125728
    Abstract: Embodiments of a substrate carrier are provided herein. In some embodiments, a substrate carrier includes a base plate, wherein the base plate is a thin, solid plate with no through holes or embedded components; and a plurality of raised portions extending from the base plate, wherein the plurality of raised portions include first raised portions and second raised portions, the first raised portions disposed radially inward from the second raised portions, wherein the base plate and the plurality of raised portions define pockets configured to retain a plurality of substrates, and wherein an upper surface of the second raised portions have a greater surface area than an upper surface of the first raised portions.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: October 22, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Fred Eric Ruhland, Sumit S. Patankar, Vijay D. Parkhe, Daniel Lee Diehl, Mingwei Zhu, Hiroyuki Takahama, Randy D. Schmieding
  • Patent number: 11994800
    Abstract: Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.
    Type: Grant
    Filed: December 14, 2022
    Date of Patent: May 28, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Tejinder Singh, Lifan Yan, Abhijit B. Mallick, Daniel Lee Diehl, Ho-yung Hwang, Jothilingam Ramalingam
  • Publication number: 20240003000
    Abstract: A structure including a metal nitride layer is formed on a workpiece by pre-conditioning a chamber that includes a metal target by flowing nitrogen gas and an inert gas at a first flow rate ratio into the chamber and igniting a plasma in the chamber before placing the workpiece in the chamber, evacuating the chamber after the preconditioning, placing the workpiece on a workpiece support in the chamber after the preconditioning, and performing physical vapor deposition of a metal nitride layer on the workpiece in the chamber by flowing nitrogen gas and the inert gas at a second flow rate ratio into the chamber and igniting a plasma in the chamber. The second flow rate ratio is less than the first flow rate ratio.
    Type: Application
    Filed: May 23, 2023
    Publication date: January 4, 2024
    Inventors: Mingwei ZHU, Zihao YANG, Nag B. PATIBANDLA, Ludovic GODET, Yong CAO, Daniel Lee DIEHL, Zhebo CHEN
  • Patent number: 11802349
    Abstract: Embodiments described herein include a method for depositing a material layer on a substrate while controlling a bow of the substrate and a surface roughness of the material layer. A bias applied to the substrate while the material layer is deposited is adjusted to control the bow of the substrate. A bombardment process is performed on the material layer to improve the surface roughness of the material layer. The bias and bombardment process improve a uniformity of the material layer and reduce an occurrence of the material layer cracking due to the bow of the substrate.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: October 31, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zihao Yang, Mingwei Zhu, Nag B. Patibandla, Yong Cao, Shumao Zhang, Zhebo Chen, Jean Lu, Daniel Lee Diehl, Xianmin Tang
  • Patent number: 11778926
    Abstract: A physical vapor deposition system includes a chamber, three target supports to targets, a movable shield positioned having an opening therethrough, a workpiece support to hold a workpiece in the chamber, a gas supply to deliver nitrogen gas and an inert gas to the chamber, a power source, and a controller. The controller is configured to move the shield to position the opening adjacent each target in turn, and at each target cause the power source to apply power sufficient to ignite a plasma in the chamber to cause deposition of a buffer layer, a device layer of a first material that is a metal nitride suitable for use as a superconductor at temperatures above 8° K on the buffer layer, and a capping layer, respectively.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: October 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Zihao Yang, Nag B. Patibandla, Ludovic Godet, Yong Cao, Daniel Lee Diehl, Zhebo Chen
  • Patent number: 11739418
    Abstract: A structure including a metal nitride layer is formed on a workpiece by pre-conditioning a chamber that includes a metal target by flowing nitrogen gas and an inert gas at a first flow rate ratio into the chamber and igniting a plasma in the chamber before placing the workpiece in the chamber, evacuating the chamber after the preconditioning, placing the workpiece on a workpiece support in the chamber after the preconditioning, and performing physical vapor deposition of a metal nitride layer on the workpiece in the chamber by flowing nitrogen gas and the inert gas at a second flow rate ratio into the chamber and igniting a plasma in the chamber. The second flow rate ratio is less than the first flow rate ratio.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: August 29, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Zihao Yang, Nag B. Patibandla, Ludovic Godet, Yong Cao, Daniel Lee Diehl, Zhebo Chen
  • Publication number: 20230115004
    Abstract: Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 13, 2023
    Inventors: Tejinder SINGH, Lifan YAN, Abhijit B. MALLICK, Daniel Lee DIEHL, Ho-yung HWANG, Jothilingam RAMALINGAM
  • Patent number: 11575071
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: February 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Patent number: 11550222
    Abstract: Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Tejinder Singh, Lifan Yan, Abhijit B. Mallick, Daniel Lee Diehl, Ho-yung Hwang, Jothilingam Ramalingam
  • Publication number: 20220384705
    Abstract: A physical vapor deposition system includes a chamber, three target supports to targets, a movable shield positioned having an opening therethrough, a workpiece support to hold a workpiece in the chamber, a gas supply to deliver nitrogen gas and an inert gas to the chamber, a power source, and a controller. The controller is configured to move the shield to position the opening adjacent each target in turn, and at each target cause the power source to apply power sufficient to ignite a plasma in the chamber to cause deposition of a buffer layer, a device layer of a first material that is a metal nitride suitable for use as a superconductor at temperatures above 8° K on the buffer layer, and a capping layer, respectively.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Inventors: Mingwei Zhu, Zihao Yang, Nag B. Patibandla, Ludovic Godet, Yong Cao, Daniel Lee Diehl, Zhebo Chen
  • Patent number: 11495461
    Abstract: Methods for forming a film stack comprising a hardmask layer and etching such hardmask layer to form features in the film stack are provided. The methods described herein facilitate profile and dimension control of features through a proper profile management scheme formed in the film stack. In one or more embodiments, a method for etching a hardmask layer includes forming a hardmask layer on a substrate, where the hardmask layer contains a metal-containing material containing a metal element having an atomic number greater than 28, supplying an etching gas mixture to the substrate, and etching the hardmask layer exposed by a photoresist layer.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: November 8, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tejinder Singh, Suketu Arun Parikh, Daniel Lee Diehl, Michael Anthony Stolfi, Jothilingam Ramalingam, Yong Cao, Lifan Yan, Chi-I Lang, Hoyung David Hwang
  • Patent number: 11437559
    Abstract: A physical vapor deposition system includes a chamber, three target supports to targets, a movable shield positioned having an opening therethrough, a workpiece support to hold a workpiece in the chamber, a gas supply to deliver nitrogen gas and an inert gas to the chamber, a power source, and a controller. The controller is configured to move the shield to position the opening adjacent each target in turn, and at each target cause the power source to apply power sufficient to ignite a plasma in the chamber to cause deposition of a buffer layer, a device layer of a first material that is a metal nitride suitable for use as a superconductor at temperatures above 8° K on the buffer layer, and a capping layer, respectively.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: September 6, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Zihao Yang, Nag B. Patibandla, Ludovic Godet, Yong Cao, Daniel Lee Diehl, Zhebo Chen
  • Patent number: 11313034
    Abstract: In some embodiments, a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) forming a plasma from a process gas within a processing region of the physical vapor deposition chamber, wherein the process gas comprises an inert gas and a hydrogen-containing gas to sputter silicon from a surface of a target within the processing region of the physical vapor deposition chamber; and (b) depositing an amorphous silicon layer atop a first layer on the substrate, wherein adjusting the flow rate of the hydrogen containing gas tunes the optical properties of the deposited amorphous silicon layer.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 26, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Weimin Zeng, Yong Cao, Daniel Lee Diehl, Huixiong Dai, Khoi Phan, Christopher Ngai, Rongjun Wang, Xianmin Tang
  • Publication number: 20210328104
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Patent number: 11081623
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: August 3, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Patent number: 11056277
    Abstract: Methods and apparatus for a magnetized substrate carrier apparatus are described herein. In some embodiments, a substrate carrier apparatus includes: a carrier plate having a support surface to support a substrate, a mask assembly disposed above the support surface, wherein the mask assembly includes an annular frame and a shadow mask disposed within the annular frame, and wherein the shadow mask includes one or more openings arranged in a predetermined pattern and disposed through the shadow mask, and one or more magnets disposed on or embedded within at least one of the carrier plate and the shadow mask to create a magnetic field above the support surface.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: July 6, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Daniel Lee Diehl, Alexander Lerner, Roey Shaviv
  • Publication number: 20210123156
    Abstract: Embodiments described herein include a method for depositing a material layer on a substrate while controlling a bow of the substrate and a surface roughness of the material layer. A bias applied to the substrate while the material layer is deposited is adjusted to control the bow of the substrate. A bombardment process is performed on the material layer to improve the surface roughness of the material layer. The bias and bombardment process improve a uniformity of the material layer and reduce an occurrence of the material layer cracking due to the bow of the substrate.
    Type: Application
    Filed: September 10, 2020
    Publication date: April 29, 2021
    Inventors: Zihao YANG, Mingwei ZHU, Nag B. PATIBANDLA, Yong CAO, Shumao ZHANG, Zhebo CHEN, Jean LU, Daniel Lee DIEHL, Xianmin TANG
  • Publication number: 20210033974
    Abstract: Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.
    Type: Application
    Filed: June 2, 2020
    Publication date: February 4, 2021
    Inventors: Tejinder SINGH, Lifan YAN, Abhijit B. MALLICK, Daniel Lee DIEHL, Ho-yung HWANG, Jothilingam RAMALINGAM
  • Patent number: 10886155
    Abstract: A method and apparatus for forming an optical stack having uniform and accurate layers is provided. A processing tool used to form the optical stack comprises, within an enclosed environment, a first transfer chamber, an on-board metrology unit, and a second transfer chamber. A first plurality of processing chambers is coupled to the first transfer chamber or the second transfer chamber. The on-board metrology unit is disposed between the first transfer chamber and the second transfer chamber. The on-board metrology unit is configured to measure one or more optical properties of the individual layers of the optical stack without exposing the layers to an ambient environment.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Zihao Yang, Nag B. Patibandla, Daniel Lee Diehl, Yong Cao, Weimin Zeng, Renjing Zheng, Edward Budiarto, Surender Kumar Gurusamy, Todd Egan, Niranjan R. Khasgiwale
  • Patent number: D904640
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: December 8, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Fred Eric Ruhland, Sumit S. Patankar, Vijay D. Parkhe, Daniel Lee Diehl, Mingwei Zhu, Hiroyuki Takahama, Randy D. Schmieding