Patents by Inventor Daniel Levner

Daniel Levner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230341378
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Application
    Filed: June 27, 2023
    Publication date: October 26, 2023
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11773359
    Abstract: The invention provides integrated Organ-on-Chip microphysiological systems representations of living Organs and support structures for such microphysiological systems.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: October 3, 2023
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Anthony Bahinski, Robert Cunningham, Josue A. Goss, Geraldine A. Hamilton, Christopher David Hinojosa, Daniel Levner, Kevin Kit Parker
  • Publication number: 20230287324
    Abstract: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
    Type: Application
    Filed: January 17, 2023
    Publication date: September 14, 2023
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Antonio Varone, Justin Nguyen, Lina Williamson, S. Jordan Kerns, Catherine Karalis, Geraldine Hamilton, Carol Lucchesi
  • Patent number: 11733234
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: August 22, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Publication number: 20230212649
    Abstract: Methods of analyzing nucleic acids of a cell are provided.
    Type: Application
    Filed: December 13, 2022
    Publication date: July 6, 2023
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Publication number: 20230159982
    Abstract: Apparatus and methods for use with a blood sample are described. The blood sample is stained with a first dye that predominantly stains DNA, and a second dye that stains at least one other cellular component being different from DNA. A plurality of images of the blood sample are acquired. A candidate object is identified as being a candidate of a given entity. A first stained area, which is stained by the first dye and which is disposed within the candidate object, is identified. A second stained area, which is stained by the second dye and which is disposed within the candidate object, is identified. The entity is detected by determining that features of the stained areas satisfy predetermined criteria associated with the entity. Other applications are also described.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 25, 2023
    Applicant: S.D. Sight Diagnostics Ltd.
    Inventors: JOSEPH JOEL POLLAK, Daniel LEVNER, Yonatan BILU, Arnon HOURI YAFIN, Noam YORAV-RAPHAEL, Yuval GREENFIELD
  • Publication number: 20230159899
    Abstract: Provided herein relates to devices for simulating a function of a tissue and methods of using the same. In some embodiments, the devices can be used to simulate a function of a human liver tissue. In some embodiments, the devices can be used to simulate a function of a dog liver tissue. Endothelial cell culture media for long-term culture of endothelial cells are also described herein.
    Type: Application
    Filed: November 22, 2022
    Publication date: May 25, 2023
    Inventors: Geraldine Hamilton, Kyung Jin Jang, Suzzette Haney, Janey Ronxhi, Konstantia Kodella, Hyoungshin Park, Josiah Sliz, Debora Barreiros Petropolis, Daniel Levner, Monicah Otieno
  • Publication number: 20230159872
    Abstract: A device for simulating a function of a tissue includes a first structure, a second structure, and a membrane. The first structure defines a first chamber. The first chamber includes a matrix disposed therein and an opened region. The second structure defines a second chamber. The membrane is located at an interface region between the first chamber and the second chamber. The membrane includes a first side facing toward the first chamber and a second side facing toward the second chamber. The membrane separates the first chamber from the second chamber.
    Type: Application
    Filed: November 16, 2022
    Publication date: May 25, 2023
    Inventors: Antonio Varone, Norman Wen, Daniel Levner, Richard Novak, Lori McPartlin, Donald E. Ingber, Youngjae Choe, Lian Leng, Justin K. Nguyen
  • Patent number: 11654399
    Abstract: A method for micro-molding a polymeric membrane and including pouring a predetermined volume of curable polymer unto a micro-fabricated mold having a post array with pillars, and overlaying the polymer with a support substrate. A spacer, such as a rubber spacer, is placed in contact with the support substrate and a force is applied to an exposed side of the spacer to compress the support substrate and the polymer together. While applying the force, the polymer is cured on the mold for a predetermined time period and at a predetermined temperature to form a polymeric membrane having a pore array with a plurality of pores corresponding to the plurality of pillars of the post array. The polymeric membrane is removed from the support substrate.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: May 23, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: David James Coon, Tiama Hamkins-Indik, Donald E. Ingber, Miles Ingram, Daniel Levner, Richard Novak, Jefferson Puerta, Daniel E. Shea, Josiah Sliz, Norman Wen
  • Publication number: 20230146985
    Abstract: The inventions provided herein relate to detection reagents, compositions, methods, and kits comprising the detection reagents for use in detection, identification, and/or quantification of analytes in a sample. Such detection reagents and methods described herein allow multiplexing of many more labeled species in the same procedure than conventional methods, in which multiplexing is limited by the number of available and practically usable colors.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Daniel Levner, Je-Hyuk Lee, George M. Church, Michael Super
  • Patent number: 11639518
    Abstract: Methods of analyzing nucleic acids of a cell are provided.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: May 2, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Patent number: 11584950
    Abstract: Apparatus and methods for use with a blood sample are described. The blood sample is stained with Hoechst stain and Acridine Orange stain. A plurality of images of the blood sample are acquired. An object is identified as being a white blood cell candidate. A first stained area, which is stained by the Hoechst stain and which is disposed within the white blood cell candidate, is identified. A second stained area, which is stained by the Acridine Orange stain and which is disposed within the white blood cell candidate, is identified. A white blood cell is detected by determining that structural features of the stained areas satisfy predetermined criteria associated with a white blood cell. Other applications are also described.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: February 21, 2023
    Assignee: S.D. Sight Diagnostics Ltd.
    Inventors: Joseph Joel Pollak, Daniel Levner, Yonatan Bilu, Arnon Houri Yafin, Noam Yorav-Raphael, Yuval Greenfield
  • Patent number: 11566277
    Abstract: Methods of analyzing nucleic acids of a cell are provided.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: January 31, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Patent number: 11566276
    Abstract: Methods of making a three-dimensional matrix of nucleic acids within a cell is provided.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 31, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Publication number: 20230022203
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: September 22, 2022
    Publication date: January 26, 2023
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 11549937
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: January 10, 2023
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Patent number: 11549136
    Abstract: Methods of making a three-dimensional matrix of nucleic acids within a cell is provided.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 10, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Patent number: 11536714
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 27, 2022
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, S. Jordan Kerns, Antonio Varone, Dongeun Huh
  • Publication number: 20220403313
    Abstract: A device for simulating a function of a tissue includes a first structure, a second structure, and a membrane. The first structure defines a first chamber. The first chamber includes a matrix disposed therein and an opened region. The second structure defines a second chamber. The membrane is located at an interface region between the first chamber and the second chamber. The membrane includes a first side facing toward the first chamber and a second side facing toward the second chamber. The membrane separates the first chamber from the second chamber.
    Type: Application
    Filed: August 16, 2022
    Publication date: December 22, 2022
    Inventors: Antonio Varone, Norman Wen, Daniel Levner, Richard Novak, Lori McPartlin, Donald E. Ingber, Youngjae Choe, Lian Leng, Justin K. Nguyen
  • Publication number: 20220390372
    Abstract: Apparatus and methods are described including preparing a blood sample for analysis by depositing the blood sample within a sample chamber (52), and placing the sample chamber, with the blood sample deposited therein, within a microscopy unit (24). One or more microscopic images of the sample chamber (52) with the blood sample deposited therein are acquired, using a microscope of the microscopy unit. Based upon the one or more images, an amount of one or more cell types within the sample chamber that had already settled within the sample chamber, prior to acquisition of the one or more microscopic images is determined. A characteristic of the sample is determined, at least partially in response thereto. Other applications are also described.
    Type: Application
    Filed: October 22, 2020
    Publication date: December 8, 2022
    Applicant: S.D. SIGHT DIAGNOSTICS LTD.
    Inventors: Sharon PECKER, Yochay Shlomo ESHEL, Amir ZAIT, Dan GLUCK, Noam YORAV-RAPHAEL, Arnon HOURI YAFIN, Sarah LEVY SCHREIER, Joseph Joel POLLAK, Daniel LEVNER, Yonatan HALPERIN, Natalie LEZMY, Itamar WEISS