Patents by Inventor Daniel Levner

Daniel Levner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210340572
    Abstract: The present invention is related to high-content microscopy imaging of microfluidic cell culture systems. A method of high-content microfluidic device microscopy is contemplated, along with related statistical analysis and microfluidic device adaptors.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Inventors: Kyung-Jin Jang, Daniel Levner, Konstantia-Roumvini Kodella, Jonathan Rubins, Debora Barreiros Petropolis, matt Boeckeler, Geraldine Hamilton
  • Publication number: 20210341378
    Abstract: The present invention is related to high-content microscopy imaging of microfluidic cell culture systems. A method of high-content microfluidic device microscopy is contemplated. along with related statistical analysis and microfluidic device adaptors.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Inventors: Kyung-Jin Jang, Daniel Levner, Konstantia-Roumvini Kodella, Jonathan Rubins, Debora Barreiros Petropolis, Samatha Peel, Adam M. Corrigan, Beate Ehrardt, Pedro Pinto, Dominic Williams, Matt Boeckeler, Alison J. Foster, Geraldine Hamilton, Lorna Ewart Ewart
  • Publication number: 20210332415
    Abstract: Methods of making a three-dimensional matrix of nucleic acids within a cell is provided.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 28, 2021
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Publication number: 20210332414
    Abstract: Methods of making a three-dimensional matrix of nucleic acids within a cell is provided.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 28, 2021
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Patent number: 11150255
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 19, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
  • Patent number: 11141727
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 12, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Publication number: 20210308675
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Application
    Filed: June 14, 2021
    Publication date: October 7, 2021
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Publication number: 20210262011
    Abstract: Methods of making a three-dimensional matrix of nucleic acids within a cell is provided.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 26, 2021
    Applicants: President and Fellows of Harvard College, President and Fellows of Harvard College
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Publication number: 20210254131
    Abstract: Methods of making a three-dimensional matrix of nucleic acids within a cell is provided.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 19, 2021
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Patent number: 11085911
    Abstract: Systems and methods for measuring dynamic hydraulic conductivity and permeability associated with a cell layer are disclosed. Some systems include a microfluidic device, one or more working-fluid reservoirs, and one or more fluid-resistance element. The microfluidic device includes a first microchannel, a second microchannel, and a barrier therebetween. The barrier includes a cell layer adhered thereto. The working fluids are delivered to the microfluidic device. The fluid-resistance elements are coupled to one or more of the fluid paths and provide fluidic resistance to cause a pressure drop across the fluid-resistance elements. Mass transfer occurs between the first microchannel and the second microchannel, which is indicative of the hydraulic conductivity and/or dynamic permeability associated with the cells.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: August 10, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Daniel Levner, Christopher David Hinojosa, Andries D. van der Meer, Marinke van der Helm, Abhishek Jain, Donald Elliot Ingber, Marjon Zamani
  • Publication number: 20210229097
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 29, 2021
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Patent number: 11067571
    Abstract: This invention is in the field of surface modification. In particular, the invention relates to the surface modification of microfluidic devices to alter surface hydrophobicity characteristics.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: July 20, 2021
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, S. Jordan Kerns, Jefferson Puerta
  • Patent number: 11065620
    Abstract: Methods of removing bubbles from a microfluidic device are described where the flow is not stopped. Methods are described that combine pressure and flow to remove bubbles from a microfluidic device. Bubbles can be removed even where the device is made of a polymer that is largely gas impermeable.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 20, 2021
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Kyung Jin Jang
  • Publication number: 20210214670
    Abstract: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
    Type: Application
    Filed: January 28, 2021
    Publication date: July 15, 2021
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Antonio Varone, Justin Nguyen, Lina Williamson, S. Jordan Kerns, Catherine Karalis, Geraldine Hamilton, Carol Lucchesi
  • Patent number: 11059041
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: July 13, 2021
    Assignee: Emulate, Inc.
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Publication number: 20210179992
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: February 16, 2021
    Publication date: June 17, 2021
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Patent number: 11034926
    Abstract: Systems and methods for improved flow properties in fluidic and microfluidic systems are disclosed. The system includes a microfluidic device having a first microchannel, a fluid reservoir having a working fluid and a pressurized gas, a pump in communication with the fluid reservoir to maintain a desired pressure of the pressurized gas, and a fluid-resistance element located within a fluid path between the fluid reservoir and the first microchannel. The fluid-resistance element includes a first fluidic resistance that is substantially larger than a second fluidic resistance associated with the first microchannel.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: June 15, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Christopher David Hinojosa, Josiah Sliz, Daniel Levner, Guy Thompson, Hubert Geisler, Jose Fernandez-Alcon, Donald E. Ingber
  • Patent number: 11021737
    Abstract: Methods of making a three-dimensional matrix of nucleic acids within a cell is provided.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: June 1, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Je-hyuk Lee, Daniel Levner, Michael Super
  • Patent number: 10989721
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 27, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
  • Patent number: 10988721
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: April 27, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon