Patents by Inventor Daniel Levner

Daniel Levner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190040349
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20190031992
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Patent number: 10184102
    Abstract: A culture module is contemplated that allows the perfusion and optionally mechanical actuation of one or more microfluidic devices, such as organ-on-a-chip microfluidic devices comprising cells that mimic at least one function of an organ in the body. A method for pressure control is contemplated to allow the control of flow rate (while perfusing cells) despite limitations of common pressure regulators. The method for pressure control allows for perfusion of a microfluidic device, such as an organ on a chip microfluidic device comprising cells that mimic cells in an organ in the body, that is detachably linked with said assembly, so that fluid enters ports of the microfluidic device from a fluid reservoir, optionally without tubing, at a controllable flow rate.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 22, 2019
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Joshua Gomes, Jose Fernandez-Alcon
  • Publication number: 20190002811
    Abstract: Drop-to-drop connection schemes are described for putting a microfluidic device in fluidic communication with a fluid source or another microfluidic device, including but not limited to, putting a microfluidic device in fluidic communication with the perfusion manifold assembly.
    Type: Application
    Filed: August 22, 2018
    Publication date: January 3, 2019
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Guy Robert Thompson, II, Petrus Wilhelmus Martinus van Ruijven, Matthew Daniel Solomon, Christian Alexander Potzner, Patrick Sean Tuohy
  • Publication number: 20180353958
    Abstract: The present invention relates to microfluidic systems, devices and methods. More specifically, the invention relates to gaskets for sealing fluid interfaces in microfluidic systems and devices.
    Type: Application
    Filed: December 2, 2016
    Publication date: December 13, 2018
    Inventors: Christopher David Hinojosa, Daniel Levner
  • Publication number: 20180346859
    Abstract: A device for simulating a function of a tissue includes a first structure, a second structure, and a membrane. The first structure defines a first chamber. The first chamber includes a matrix disposed therein and an opened region. The second structure defines a second chamber. The membrane is located at an interface region between the first chamber and the second chamber. The membrane includes a first side facing toward the first chamber and a second side facing toward the second chamber. The membrane separates the first chamber from the second chamber.
    Type: Application
    Filed: December 2, 2016
    Publication date: December 6, 2018
    Inventors: Antonio Varone, Norman Wen, Daniel Levner, Richard Novak, Lori McPartlin, Donald E. Ingber, Youngjae Choe, Lian Leng, Justin K. Nguyen
  • Patent number: 10125342
    Abstract: Drop-to-drop connection schemes are described for putting a microfluidic device in fluidic communication with a fluid source or another microfluidic device, including but not limited to, putting a microfluidic device in fluidic communication with the perfusion manifold assembly.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: November 13, 2018
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Josiah Daniel Sliz, Christopher David Hinojosa, Guy Robert Thompson, II, Petrus Wilhelmus Martinus van Ruijven, Matthew Daniel Solomon, Christian Alexander Potzner, Patrick Sean Tuohy
  • Publication number: 20180320125
    Abstract: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
    Type: Application
    Filed: December 2, 2016
    Publication date: November 8, 2018
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Antonio Varone, Justin Nguyen, Lina Williamson, S. Jordan Kerns, Katia Karalis, Geraldine Hamilton, Carol Lucchesi
  • Publication number: 20180305651
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: October 19, 2016
    Publication date: October 25, 2018
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20180298332
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 18, 2018
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20180298331
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 18, 2018
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Patent number: 10086372
    Abstract: Described herein are fluid-flow control devices for transferring a fluid from a place to another and/or controlling a fluid flow. In some embodiments, fluid-flow control devices described herein can be used as pumping devices to transfer a fluid by peristaltic motion and/or as valve devices to control fluid flow for various applications, e.g., in a microfluidic platform.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: October 2, 2018
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Guy Thompson, Daniel Levner, Christopher David Hinojosa
  • Publication number: 20180185844
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Application
    Filed: November 21, 2017
    Publication date: July 5, 2018
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Patent number: 9962698
    Abstract: A microfluidic system includes a microfluidic device connected to a bubble trap device whereby fluid flowing to the microfluidic device passes through the bubble trap device to remove gas bubbles prior to entering the microfluidic device. The bubble trap can include a separation chamber and an exhaust chamber separated by a hydrophobic porous membrane and gas bubbles in the fluid entering the separation chamber pass through the hydrophobic porous membrane into the exhaust chamber while the fluid remains in the separation chamber. The bubble trap can be formed by bonding a first body portion to a first side of the hydrophobic porous membrane and bonding a second body portion to a second side of the hydrophobic porous membrane. The exhaust chamber can be connected to an elongated exhaust channel that limits the evaporation losses of the fluid through the hydrophobic porous membrane.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: May 8, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Donald E. Ingber, Geraldine A. Hamilton, Daniel Levner, Christopher Hinojosa, Daniel Patterson
  • Publication number: 20180117588
    Abstract: According to aspects of the present invention, a cartridge assembly for transporting fluid into or out of one or more fluidic devices includes a first layer and a second layer. The first layer includes a first surface. The first surface includes at least one partial channel disposed thereon. The second layer abuts the first surface, thereby forming a channel from the at least one partial channel. At least one of the first layer and the second layer is a resilient layer formed from a pliable material. At least one of the first layer and the second layer includes a via hole. The via hole is aligned with the channel to pass fluid thereto. The via hole is configured to pass fluid through the first layer or the second layer substantially perpendicularly to the channel. Embossments are also used to define aspects of a fluidic channel.
    Type: Application
    Filed: December 17, 2017
    Publication date: May 3, 2018
    Inventors: Donald E. Ingber, Daniel Levner, Guy Thompson, II, Christopher David Hinojosa
  • Publication number: 20180119081
    Abstract: A microfluidic device for determining a response of cells comprises a microchannel and a seeding channel. The microchannel is at least partially defined by a porous membrane having cells adhered thereto. The microchannel has a first cross-sectional area. The seeding channel delivers a working fluid to the cells within the microchannel. The seeding channel has a second cross-sectional area that is less than the first cross-sectional area such that a flow of the working fluid produces a substantially higher shear force within the seeding channel to inhibit the attachment of cells within the seeding channel. And when multiple seeding channels are used to deliver fluids to multiple microchannels that define an active cellular layer across the membrane, the seeding channels are spatially offset from each other such that fluid communication between the fluids occurs only at the active region via the membrane, not at the seeding channels.
    Type: Application
    Filed: April 8, 2016
    Publication date: May 3, 2018
    Inventors: Karel Domansky, Christopher David Hinojosa, Donald E. Ingber, Daniel Levner, Guy Thompson, II
  • Publication number: 20180071690
    Abstract: A method for micro-molding a polymeric membrane and including pouring a predetermined volume of curable polymer unto a micro-fabricated mold having a post array with pillars, and overlaying the polymer with a support substrate. A spacer, such as a rubber spacer, is placed in contact with the support substrate and a force is applied to an exposed side of the spacer to compress the support substrate and the polymer together. While applying the force, the polymer is cured on the mold for a predetermined time period and at a predetermined temperature to form a polymeric membrane having a pore array with a plurality of pores corresponding to the plurality of pillars of the post array. The polymeric membrane is removed from the support substrate.
    Type: Application
    Filed: March 16, 2016
    Publication date: March 15, 2018
    Inventors: James Coon, Tiama Hamkins-Indik, Donald E. Ingber, Miles Ingram, Daniel Levner, Richard Novak, Jefferson Puerta, Daniel E. Shea, Josiah Sliz, Norman Wen
  • Patent number: D812766
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: March 13, 2018
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Guy Robert Thompson, Norman Wen, Lewis Rowe
  • Patent number: D816861
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: May 1, 2018
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Guy Robert Thompson, II, Norman Wen, Lewis Rowe
  • Patent number: D838864
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: January 22, 2019
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Guy Robert Thompson, II, Norman Wen, Lewis Rowe