Patents by Inventor Daniel Ng

Daniel Ng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150214312
    Abstract: A termination structure with multiple embedded potential spreading capacitive structures (TSMEC) and method are disclosed for terminating an adjacent trench MOSFET atop a bulk semiconductor layer (BSL) with bottom drain electrode. The BSL has a proximal bulk semiconductor wall (PBSW) supporting drain-source voltage (DSV) and separating TSMEC from trench MOSFET. The TSMEC has oxide-filled large deep trench (OFLDT) bounded by PBSW and a distal bulk semiconductor wall (DBSW). The OFLDT includes a large deep oxide trench into the BSL and embedded capacitive structures (EBCS) located inside the large deep oxide trench and between PBSW and DBSW for spatially spreading the DSV across them. In one embodiment, the EBCS contains interleaved conductive embedded polycrystalline semiconductor regions (EPSR) and oxide columns (OXC) of the OFLDT, a proximal EPSR next to PBSW is connected to an active upper source region and a distal EPSR next to DBSW is connected to the DBSW.
    Type: Application
    Filed: April 13, 2015
    Publication date: July 30, 2015
    Inventors: Xiaobin Wang, Anup Bhalla, Hamza Yilmaz, Daniel Ng
  • Publication number: 20150137227
    Abstract: Aspects of the present disclosure describe a high density trench-based power MOSFETs with self-aligned source contacts and methods for making such devices. The source contacts are self-aligned with spacers and the active devices may have a two-step gate oxide. A lower portion may have a thickness that is larger than the thickness of an upper portion of the gate oxide. The MOSFETS also may include a depletable shield in a lower portion of the substrate. The depletable shield may be configured such that during a high drain bias the shield substantially depletes. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: December 10, 2014
    Publication date: May 21, 2015
    Inventors: Madhur Bobde, Hamza Yilmaz, Sik Lui, Daniel Ng
  • Patent number: 9029236
    Abstract: A termination structure with multiple embedded potential spreading capacitive structures (TSMEC) and method are disclosed for terminating an adjacent trench MOSFET atop a bulk semiconductor layer (BSL) with bottom drain electrode. The BSL has a proximal bulk semiconductor wall (PBSW) supporting drain-source voltage (DSV) and separating TSMEC from trench MOSFET. The TSMEC has oxide-filled large deep trench (OFLDT) bounded by PBSW and a distal bulk semiconductor wall (DBSW). The OFLDT includes a large deep oxide trench into the BSL and embedded capacitive structures (EBCS) located inside the large deep oxide trench and between PBSW and DBSW for spatially spreading the DSV across them. In one embodiment, the EBCS contains interleaved conductive embedded polycrystalline semiconductor regions (EPSR) and oxide columns (OXC) of the OFLDT, a proximal EPSR next to PBSW is connected to an active upper source region and a distal EPSR next to DBSW is connected to the DBSW.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 12, 2015
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Xiaobin Wang, Anup Bhalla, Hamza Yilmaz, Daniel Ng
  • Patent number: 9024375
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of trenches. Each of the trenches is filled with a plurality of epitaxial layers of alternating conductivity types constituting nano tubes functioning as conducting channels stacked as layers extending along a sidewall direction with a “Gap Filler” layer filling a merging-gap between the nano tubes disposed substantially at a center of each of the trenches. The “Gap Filler” layer can be very lightly doped Silicon or grown and deposited dielectric layer. In an exemplary embodiment, the plurality of trenches are separated by pillar columns each having a width approximately half to one-third of a width of the trenches.
    Type: Grant
    Filed: August 26, 2012
    Date of Patent: May 5, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Daniel Ng, Lingpeng Guan, Anup Bhalla, Wilson Ma, Moses Ho, John Chen
  • Patent number: 9006053
    Abstract: Method for fabricating MOSFET integrated with Schottky diode (MOSFET/SKY) is disclosed. Gate trench is formed in an epitaxial layer overlaying semiconductor substrate, gate material is deposited therein. Body, source, dielectric regions are successively formed upon epitaxial layer and the gate trench. Top contact trench (TCT) is etched with vertical side walls defining Schottky diode cross-sectional width SDCW through dielectric and source region defining source-contact depth (SCD); and partially into body region by total body-contact depth (TBCD). A heavily-doped embedded body implant region (EBIR) of body-contact depth (BCD)<TBCD is created into side walls of TCT and beneath SCD. An embedded Shannon implant region (ESIR) is created into sub-contact trench zone (SCTZ) beneath TCT floor. A metal layer is formed in contact with ESIR, body and source region. The metal layer also fills TCT and covers dielectric region thus completing the MOSFET/SKY with only one-time etching of its TCT.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: April 14, 2015
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Ji Pan, Daniel Ng, Sung-Shan Tai, Anup Bhalla
  • Patent number: 8963233
    Abstract: This invention discloses a new switching device that includes a drain disposed on a first surface and a source region disposed near a second surface of a semiconductor opposite the first surface. An insulated gate electrode is disposed on top of the second surface for controlling a source to drain current and a source electrode is interposed into the insulated gate electrode for substantially preventing a coupling of an electrical field between the gate electrode and an epitaxial region underneath the insulated gate electrode. The source electrode further covers and extends over the insulated gate for covering an area on the second surface of the semiconductor to contact the source region, An epitaxial layer is disposed above and having a different dopant concentration than the drain region. The gate electrode is insulated from the source electrode by an insulation layer having a thickness depending on a Vgsmax rating of the vertical power device.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: February 24, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Daniel Ng, Tiesheng Li, Sik K. Lui
  • Patent number: 8946816
    Abstract: Aspects of the present disclosure describe a high density trench-based power MOSFETs with self-aligned source contacts and methods for making such devices. The source contacts are self-aligned with spacers and the active devices may have a two-step gate oxide. A lower portion may have a thickness that is larger than the thickness of an upper portion of the gate oxide. The MOSFETS also may include a depletable shield in a lower portion of the substrate. The depletable shield may be configured such that during a high drain bias the shield substantially depletes. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: February 3, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Hamza Yilmaz, Sik Lui, Daniel Ng
  • Publication number: 20140319605
    Abstract: A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device may include a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each of the trenches has a depth in a first dimension, a width in a second dimension and a length in a third dimension. The body region is of opposite conductivity type to the lightly and heavily doped layers. The source region is formed proximate the upper surface. One or more deep contacts are formed at one or more locations along the third dimension proximate one or more of the trenches. The contacts extend in the first direction from the upper surface into the lightly doped layer and are in electrical contact with the source region.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: Hamza Yilmaz, Daniel Ng, Daniel Calafut, Madhur Bobde, Anup Bhalla, Ji Pan, Yeeheng Lee, Jongoh Kim
  • Publication number: 20140264571
    Abstract: A trench formed in a body layer and epitaxial layer of a substrate is lined with a dielectric layer. A shield electrode formed within a lower portion of the trench is insulated by the dielectric layer. A gate electrode formed in the trench above the shield electrode is insulated from the shield electrode by another dielectric layer. One or more source regions formed within the body layer is adjacent a sidewall of the trench. A source pad formed above the body layer is electrically connected to the source regions and insulated from the gate electrode and shield electrode. The source pad provides an external contact to the source region. A gate pad provides an external contact to the gate electrode. A shield electrode pad provides an external contact to the shield electrode. A resistive element is electrically connected between the shield electrode pad and a source lead.
    Type: Application
    Filed: June 3, 2014
    Publication date: September 18, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Sik Lui, Yi Su, Daniel Ng, Daniel Calafut, Anup Bhalla
  • Patent number: 8828857
    Abstract: An integrated structure combines field effect transistors and a Schottky diode. Trenches formed into a substrate composition extend along a depth of the substrate composition forming mesas therebetween. Each trench is filled with conductive material separated from the trench walls by dielectric material forming a gate region. Two first conductivity type body regions inside each mesa form wells partly into the depth of the substrate composition. An exposed portion of the substrate composition separates the body regions. Second conductivity type source regions inside each body region are adjacent to and on opposite sides of each well. Schottky barrier metal inside each well forms Schottky junctions at interfaces with exposed vertical sidewalls of the exposed portion of the substrate composition separating the body regions.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: September 9, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Sik Lui, Yi Su, Daniel Ng, Anup Bhalla
  • Patent number: 8829603
    Abstract: A shielded gate trench field effect transistor can be formed on a substrate having an epitaxial layer on the substrate and a body layer on the epitaxial layer. A trench formed in the body layer and epitaxial layer is lined with a dielectric layer. A shield electrode is formed within a lower portion of the trench. The shield electrode is insulated by the dielectric layer. A gate electrode is formed in the trench above the shield electrode and insulated from the shield electrode by an additional dielectric layer. One or more source regions formed within the body layer is adjacent a sidewall of the trench. A source pad formed above the body layer is electrically connected to the one or more source regions and insulated from the gate electrode and shield electrode. The source pad provides an external contact to the source region. A gate pad provides an external contact to the gate electrode. A shield electrode pad provides an external contact to the shield electrode.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: September 9, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Sik Lui, Yi Su, Daniel Ng, Daniel Calafut, Anup Bhalla
  • Publication number: 20140239382
    Abstract: Aspects of the present disclosure describe a high density trench-based power MOSFETs with self-aligned source contacts and methods for making such devices. The source contacts are self-aligned with spacers and the active devices may have a two-step gate oxide. A lower portion may have a thickness that is larger than the thickness of an upper portion of the gate oxide. The MOSFETS also may include a depletable shield in a lower portion of the substrate. The depletable shield may be configured such that during a high drain bias the shield substantially depletes. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Hamza Yilmaz, Sik Lui, Daniel Ng
  • Publication number: 20140235024
    Abstract: Method for fabricating MOSFET integrated with Schottky diode (MOSFET/SKY) is disclosed. Gate trench is formed in an epitaxial layer overlaying semiconductor substrate, gate material is deposited therein. Body, source, dielectric regions are successively formed upon epitaxial layer and the gate trench. Top contact trench (TCT) is etched with vertical side walls defining Schottky diode cross-sectional width SDCW through dielectric and source region defining source-contact depth (SCD); and partially into body region by total body-contact depth (TBCD). A heavily-doped embedded body implant region (EBIR) of body-contact depth (BCD)<TBCD is created into side walls of TCT and beneath SCD. An embedded Shannon implant region (ESIR) is created into sub-contact trench zone (SCTZ) beneath TCT floor. A metal layer is formed in contact with ESIR, body and source region. The metal layer also fills TCT and covers dielectric region thus completing the MOSFET/SKY with only one-time etching of its TCT.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Ji Pan, Daniel Ng, Sung-Shan Tai, Anup Bhalla
  • Publication number: 20140225185
    Abstract: The invention relates to a power semiconductor device and its preparation methods thereof. Particularly, the invention aims at providing a method for reducing substrate contribution to the Rdson (drain-source on resistance) of power MOSFETs, and a power MOSFET device made by the method. By forming one or more bottom grooves at the bottom of Si substrate, the on resistance of the power MOSFET device attributed to the substrate is effectively reduced. A matching lead frame base complementary to the substrate with bottom grooves further improves the package of the power MOSFET device.
    Type: Application
    Filed: March 8, 2014
    Publication date: August 14, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Yi Su, Daniel Ng, Anup Bhalla, Jun Lu
  • Patent number: 8802530
    Abstract: A semiconductor power device includes a thick bottom insulator formed in a lower portion of a trench in a semiconductor epitaxial region. An electrically conductive gate electrode is formed in the trench above the bottom insulator. The gate electrode is electrically insulated from the epitaxial region by the bottom insulator and a gate insulator. Charge is deliberately induced in the thick bottom insulator proximate an interface between the bottom insulator and the epitaxial semiconductor region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: August 12, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Xiaobin Wang, Anup Bhalla, Daniel Ng
  • Patent number: 8802509
    Abstract: A semiconductor power device supported on a semiconductor substrate comprising a plurality of transistor cells each having a source and a drain with a gate to control an electric current transmitted between the source and the drain. The semiconductor further includes a gate-to-drain (GD) clamp termination connected in series between the gate and the drain further includes a plurality of back-to-back polysilicon diodes connected in series to a silicon diode includes parallel doped columns in the semiconductor substrate wherein the parallel doped columns having a predefined gap. The doped columns further include a U-shaped bend column connect together the ends of parallel doped columns with a deep doped well disposed below and engulfing the U-shaped bend.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: August 12, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yi Su, Anup Bhalla, Daniel Ng
  • Patent number: 8785270
    Abstract: A semiconductor device includes a plurality of trenches including active gate trenches in an active area and gate runner/termination trenches and shield electrode pickup trenches in a termination area outside the active area. The gate runner/termination trenches include one or more trenches that define a mesa located outside an active area. A first conductive region is formed in the plurality of trenches. An intermediate dielectric region and termination protection region are formed in the trenches that define the mesa. A second conductive region is formed in the portion of the trenches that define the mesa. The second conductive region is electrically isolated from the first conductive region by the intermediate dielectric region. A first electrical contact is made to the second conductive regions and a second electrical contact to the first conductive region in the shield electrode pickup trenches. One or more Schottky diodes are formed within the mesa.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: July 22, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yi Su, Daniel Ng, Anup Bhalla, Hong Chang, Jongoh Kim, John Chen
  • Patent number: 8785278
    Abstract: A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device may include a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each of the trenches has a depth in a first dimension, a width in a second dimension and a length in a third dimension. The body region is of opposite conductivity type to the lightly and heavily doped layers. The source region is formed proximate the upper surface. One or more deep contacts are formed at one or more locations along the third dimension proximate one or more of the trenches. The contacts extend in the first direction from the upper surface into the lightly doped layer and are in electrical contact with the source region.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: July 22, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Daniel Ng, Daniel Calafut, Madhur Bobde, Anup Bhalla, Ji Pan, Yeeheng Lee, Jongoh Kim
  • Patent number: 8779510
    Abstract: This invention discloses semiconductor power device that includes a plurality of top electrical terminals disposed near a top surface of a semiconductor substrate. Each and every one of the top electrical terminals comprises a terminal contact layer formed as a silicide contact layer near the top surface of the semiconductor substrate. The trench gates of the semiconductor power device are opened from the top surface of the semiconductor substrate and each and every one of the trench gates comprises the silicide layer configured as a recessed silicide contact layer disposed on top of every on of the trench gates slightly below a top surface of the semiconductor substrate surround the trench gate.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: July 15, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, John Chen, Daniel Ng, Wenjun Li
  • Publication number: 20140179074
    Abstract: Method for fabricating MOSFET integrated with Schottky diode (MOSFET/SKY) is disclosed. Gate trench is formed in an epitaxial layer overlaying semiconductor substrate, gate material is deposited therein. Body, source, dielectric regions are successively formed upon epitaxial layer and the gate trench. Top contact trench (TCT) is etched with vertical side walls defining Schottky diode cross-sectional width SDCW through dielectric and source region defining source-contact depth (SCD); and partially into body region by total body-contact depth (TBCD). A heavily-doped embedded body implant region (EBIR) of body-contact depth (BCD)<TBCD is created into side walls of TCT and beneath SCD. An embedded Shannon implant region (ESIR) is created into sub-contact trench zone (SCTZ) beneath TCT floor. A metal layer is formed in contact with ESIR, body and source region. The metal layer also fills TCT and covers dielectric region thus completing the MOSFET/SKY with only one-time etching of its TCT.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: Ji Pan, Daniel Ng, Sung-Shan Tai, Anup Bhalla