Patents by Inventor Daniel Perez

Daniel Perez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10705192
    Abstract: Optoelectronic modules (100) are operable to distinguish between signals indicative of reflections from an object of interest and signals indicative of a spurious reflection. Various modules are operable to recognize spurious reflections by means of dedicated spurious-reflection detection pixels (126) and, in some cases, also to compensate for errors caused by spurious reflections.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: July 7, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jens Kubacki, Jim Lewis, Miguel Bruno Vaello Paños, Michael Lehmann, Stephan Beer, Bernhard Buettgen, Daniel Pérez Calero, Bassam Hallal
  • Publication number: 20200209473
    Abstract: The present invention relates to a photonic chip realized by combining at least one Programmable Photonics Analog Block (PPAB) and at least one Reconfigurable Photonic Interconnection (RPI) implemented over a photonic chip that is capable of implementing one or various simultaneous photonics circuits and/or linear multipart transformations by the appropriate programming of its resources (i.e. PPABs and RPIs) and the selection of its input and output ports. The invention also relates to a field-programmable photonic array (FPPA) comprising at least a programmable circuit based on tunable beamsplitters with independent coupling and phase-sifting configuration and peripheral high-performance building blocks.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: José CAPMANY FRANCOY, Ivana Gasulla Mestre, Daniel PÉREZ LÓPEZ
  • Patent number: 10603272
    Abstract: Pharmaceutical formulations and methods useful for the treatment of anorexia and the stimulation of appetite and weight gain, and the management of weight loss in dogs and cats.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: March 31, 2020
    Assignee: Kindred Biosciences, Inc.
    Inventors: William Buhles, Richard Cortez, Kristin Maas, Geeta Srivastava, Daniel Perez
  • Publication number: 20200093828
    Abstract: The present invention relates to a series of substituted purine derivatives capable of inhibiting CDC7 kinase activity and, as such, suitable for use in the treatment of neurological diseases such as, inter alia, Alzheimer's disease, amyotrophic lateral sclerosis or frontotemporal dementia, involving hyperphosphorylation of TDP-43 and the subsequent formation of aggregates, induced by CDC7.
    Type: Application
    Filed: March 21, 2018
    Publication date: March 26, 2020
    Inventors: Ana MARTINEZ GIL, Daniel PEREZ, Carmen GIL AYUSO-GONTÁN, Angeles MARTIN-REQUERO, Elisa ROJAS PRATS, Loreto MARTINEZ-GONZALEZ, Concepción PEREZ
  • Publication number: 20200069052
    Abstract: A workspace system includes different base components, different accessory interfaces and different accessories. Different accessory interfaces may be fixed to different base components, and different accessories may be releasably engaged by different, or the same accessory interfaces. The same accessories may be engaged by different accessory interfaces. The base components and accessories may be reconfigured to define different workspaces. Methods of assembling and reconfiguring the workspaces are also provided.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 5, 2020
    Applicant: Steelcase Inc.
    Inventors: John A. Allen, Charles Beasley, William Bennie, Justin G. Beitzel, Antonio Caballero, Rachel Dekker, Sean M. Derrick, Kristi Hooper, Brandon Johnson, Daniel Perez Marin, Alban Moriniere, Jessica Napper, Eric A. Otto, Penghao Shan, Thomas Siffer
  • Patent number: 10566363
    Abstract: This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: February 18, 2020
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Peter Riel, Markus Rossi, Daniel Pérez Calero, Matthias Gloor, Moshe Doron, Dmitry Bakin, Philippe Bouchilloux
  • Patent number: 10509147
    Abstract: An apparatus for producing structured light comprises a first optical arrangement which comprises a microlens array (L1) comprising a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P and an illumination unit for illuminating the microlens array. The illumination unit comprises an array (S1) of light sources (1) for emitting light of a wavelength L each and having an aperture each, wherein the apertures are located in a common emission plane which is located at a distance D from the microlens array. For the lens pitch P, the distance D and the wavelength L, the following equation applies P2=2LD/N, wherein N is an integer with N?1. High-contrast high-intensity light patterns can be produced. Devices comprising such apparatuses can be used for depth mapping.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 17, 2019
    Assignee: AMS SENSORS SINGAPORE PTE. LTD
    Inventors: Markus Rossi, Hans Peter Herzig, Philipp Mueller, Ali Naqavi, Daniel Infante Gomez, Moshe Doron, Matthias Gloor, Alireza Yasan, Hartmut Rudmann, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Patent number: 10478106
    Abstract: The present disclosure concerns a measuring probe (10) for non-invasive in vivo measurement of blood analytes (33) by Raman spectroscopy. The measuring probe (10) comprises a housing (20) having a skin engaging surface (21). The housing (20) comprises a first optical system (1, 3, 4) arranged for providing source light (11) to the skin engaging surface (21) for penetrating a subject's skin (31) by said source light (11) for interacting with the blood analytes (33). The housing (20) further comprises a second optical system (5, 6, 2) arranged for capturing scattered Raman light (12) from the blood analytes (33) for measurement of the blood analytes (33). The first optical system (1, 3, 4) is arranged for providing the source light (11) as a collimated beam (1c) onto the skin (31).
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: November 19, 2019
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Daniel Perez Calero, James Peter Robert Day, Jacobus Thomas Wilhelmus Elisabeth Vogels, Maarten J. Scholtes-Timmerman, Jacobus Johannes Frederik van Veen
  • Publication number: 20190321105
    Abstract: Aspects of the disclosure may involve a method of generating resection plane data for use in planning an arthroplasty procedure on a patient bone. The method may include: obtaining patient data associated with at least a portion of the patient bone, the patient data captured using a medical imaging machine; generating a three-dimensional patient bone model from the patient data, the patient bone model including a polygonal surface mesh; identifying a location of a posterior point on the polygonal surface mesh; creating a three-dimensional shape centered at or near the location; identifying a most posterior vertex of all vertices of the polygonal surface mesh that may be enclosed by the three-dimensional shape; using the most posterior vertex as a factor for determining a posterior resection depth; and generating resection data using the posterior resection depth, the resection data configured to be utilized by a navigation system during the arthroplasty procedure.
    Type: Application
    Filed: June 10, 2019
    Publication date: October 24, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Jason Karl Otto, Abdullah Zafar Abbasi, Milan Ikits, Daniel Perez, Shang Mu, Xiping Li, Ta-Cheng Chang
  • Patent number: 10371954
    Abstract: The present disclosure describes optoelectronic modules (e.g., hybrid lens array packages) that have multiple optical channels, each of which includes at least one beam shaping element (e.g., a lens) that is part of a laterally contiguous array. Each optical channel is associated with a respective light sensitive region of an image sensor. Some or all of the channels also can include at least one beam shaping element (e.g., a lens) that is not part of a laterally contiguous array. In some cases, the arrays can include alignment features to facilitate alignment of the arrays with one another.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: August 6, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Daniel Perez Calero, Kai Engelhardt, Hartmut Rudmann, Tobias Senn
  • Patent number: 10359505
    Abstract: The present disclosure describes optical imaging and optical detection modules that include sensors such as time-of-flight (TOF) sensors. Various implementations are described that, in some instances, can help reduce the amount of optical cross-talk between active detection pixels and reference pixels and/or can facilitate the ability of the sensor to determine an accurate phase difference to be used, for example, in distance calculations.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: July 23, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Bernhard Buettgen, Miguel Bruno Vaello Paños, Stephan Beer, Michael Lehmann, Daniel Pérez Calero, Sophie Godé, Bassam Hallal
  • Patent number: 10357315
    Abstract: Aspects of the disclosure may involve a method of generating resection plane data for use in planning an arthroplasty procedure on a patient bone. The method may include: obtaining patient data associated with at least a portion of the patient bone, the patient data captured using a medical imaging machine; generating a three-dimensional patient bone model from the patient data, the patient bone model including a polygonal surface mesh; identifying a location of a posterior point on the polygonal surface mesh; creating a three-dimensional shape centered at or near the location; identifying a most posterior vertex of all vertices of the polygonal surface mesh that may be enclosed by the three-dimensional shape; using the most posterior vertex as a factor for determining a posterior resection depth; and generating resection data using the posterior resection depth, the resection data configured to be utilized by a navigation system during the arthroplasty procedure.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 23, 2019
    Assignee: MAKO Surgical Corp.
    Inventors: Jason Karl Otto, Abdullah Zafar Abbasi, Milan Ikits, Daniel Perez, Shang Mu, Xiping Li, Ta-Cheng Chang
  • Publication number: 20190213815
    Abstract: The present invention is generally a movable barrier operator configured for remote actuation, and more specifically, to a movable barrier operator configured to generate a barrier command in response to an authorized mobile device joining wireless network. The authorization may be established by connecting the mobile device to the operator through a wireless communication means. The wireless communication means may include known protocols such as Bluetooth™, Wi-Fi, NFC, ZigBee™, or any other type of wireless communication.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 11, 2019
    Inventors: Ali Tehranchi, Pezhman Karimi, Daniel Perez
  • Publication number: 20190147680
    Abstract: The present invention is generally a movable barrier operator configured for remote actuation, and more specifically, to a movable barrier operator configured to generate a barrier command in response to an authorized mobile device joining wireless network. The authorization may be established by connecting the mobile device to the operator through a wireless communication means. The wireless communication means may include known protocols such as Bluetooth™, Wi-Fi, NFC, ZigBee™, or any other type of wireless communication.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Ali Tehranchi, Pezhman Karimi, Daniel Perez
  • Patent number: 10288481
    Abstract: The present disclosure concerns a spectrometer (10) and method for generating a two dimensional spectrum (S). The spectrometer (10) comprises a main grating (3) and cross dispersion element (2). An imaging mirror (4) is arranged for reflecting and focussing dispersed radiation (R3) from the main grating (3) towards an image plane (IP) for imaging the two dimensional spectrum (S) onto an image plane (IP) of the spectrometer (10). A correction lens (6) is arranged for correcting optical aberrations in the imaging of the two dimensional spectrum (S) in the image plane (IP). The imaging mirror (4) and correction lens (6) have a coinciding axis of cylindrical symmetry (AS).
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: May 14, 2019
    Assignee: Nederlandse Organisatie voor toegepast—natuurwetenschappelijk onderzoek TNO
    Inventors: James Peter Robert Day, Kees Moddemeijer, Daniel Perez Calero, Tom Duivenvoorde, Marijn Sandtke
  • Patent number: 10234331
    Abstract: The present disclosure concerns a monolithic spectrometer for spectrally resolving light. The spectrometer comprises a body of solid material having optical surfaces arranged to guide the light along an optical path inside the body. A collimating surface and focusing surface are part of a single surface having a continuous optically functional shape. The surfaces of the body are arranged to have a third or fourth part of the optical path between a grating surface and an exit surface cross with a first part of the optical path between an entry surface and a collimating surface.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: March 19, 2019
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Daniel Perez Calero, James Peter Robert Day, Tom Duivenvoorde, Marijn Sandtke
  • Publication number: 20190049097
    Abstract: The illumination module for emitting light (5) can operate in at least two different modes, wherein in each of the modes, the emitted light (5) has a different light distribution. The module has a mode selector (10) for selecting the mode in which the module operates, and it has an optical arrangement. The arrangement includes—a microlens array (LL1) with a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P (P1);—an illuminating unit for illuminating the microlens array (LL1). The illuminating unit includes a first array of light sources (S1) operable to emit light of a first wavelength L1 each and having an aperture each. The apertures are located in a common emission plane which is located at a distance D (D1) from the microlens array (LL1). In a first one of the modes, for the lens pitch P, the distance D and the wavelength L1 applies P2=2·L1·D/N wherein N is an integer with N?1.
    Type: Application
    Filed: January 24, 2017
    Publication date: February 14, 2019
    Inventors: Markus Rossi, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Patent number: 10192377
    Abstract: The present invention is generally a movable barrier operator configured for remote actuation, and more specifically, to a movable barrier operator configured to generate a barrier command in response to an authorized mobile device joining wireless network. The authorization may be established by connecting the mobile device to the operator through a wireless communication means. The wireless communication means may include known protocols such as Bluetooth™, Wi-Fi, NFC, ZigBee™, or any other type of wireless communication.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: January 29, 2019
    Assignee: ELIKA ACCESS SYSTEMS, LLC
    Inventors: Ali Tehranchi, Pezhman Karimi, Daniel Perez
  • Patent number: 10186097
    Abstract: The present invention is generally a movable barrier operator configured for remote actuation, and more specifically, to a movable barrier operator configured to generate a barrier command in response to an authorized mobile device joining wireless network. The authorization may be established by connecting the mobile device to the operator through a wireless communication means. The wireless communication means may include known protocols such as Bluetooth™, Wi-Fi, NFC, ZigBee™, or any other type of wireless communication.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: January 22, 2019
    Assignee: ELIKA ACCESS SYSTEMS, LLC
    Inventors: Ali Tehranchi, Pezhman Karimi, Daniel Perez
  • Publication number: 20190005688
    Abstract: Non-limiting examples of the present disclosure relate to processing operations for dynamic badge generation and presentation, for example, within a user interface of an exemplary application/service. Data associated with a user account of an application may be accessed. As an example, the application may be a social networking application configured for team collaboration. A status of the user account is detected that relates to satisfaction of a badge count threshold for display of a specific badge within the application. In response to the detected status, a badge icon for the specific badge is dynamically generated. As an example, the application may be configured to call a process for execution of rendering operations that dynamically generates the exemplary badge icon. The badge icon may comprise image content that is rendered in real-time for the detected status. The badge icon may be presented through the user interface of the application.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: Daniel Perez Alvarez, Jesse Martin