Patents by Inventor Daniel Popp

Daniel Popp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230199743
    Abstract: The present disclosure is directed to techniques to facilitate power boosting for wireless communication devices (e.g., user equipment). The user equipment may be subject to specifications (e.g., the 3GPP specification) that require maximum power reduction (MPR) depending on the resource block allocation region in which the user equipment is operating. However, certain regions defined by the 3GPP specification may not facilitate transmission power boost as applied to shaped (e.g., modulated) transmissions. The techniques disclosed herein include defining the regions such that the MPR restrictions applied to the user equipment are reduced or minimized for allocations that enable power boosting. The regions may be defined using parameters based on a maximum number of resource blocks specified for a certain channel bandwidth, the amount of allocated resource blocks, and the resource block at which the allocation begins.
    Type: Application
    Filed: August 19, 2022
    Publication date: June 22, 2023
    Inventors: Daniel Popp, Anatoliy S. Ioffe
  • Publication number: 20230199744
    Abstract: The present disclosure is directed to techniques to facilitate power boosting for wireless communication devices (e.g., user equipment). The user equipment may be subject to specifications (e.g., the 3GPP specification) that require maximum power reduction (MPR) depending on the resource block allocation region in which the user equipment is operating. However, certain regions defined by the 3GPP specification may not facilitate transmission power boost as applied to shaped (e.g., modulated) transmissions. The techniques disclosed herein include defining the regions such that the MPR restrictions applied to the user equipment are reduced or minimized for allocations that enable power boosting. The regions may be defined using parameters based on a maximum number of resource blocks specified for a certain channel bandwidth, the amount of allocated resource blocks, and the resource block at which the allocation begins.
    Type: Application
    Filed: August 19, 2022
    Publication date: June 22, 2023
    Inventors: Daniel Popp, Anatoliy S. Ioffe
  • Patent number: 11652448
    Abstract: A transmitting and receiving device having a module (GSZ) with a configurable HF high-power amplifier (HPA) that includes a main power amplifier (DM) with a main amplifier core and at least one peak power amplifier (DP1) having an auxiliary amplifier core. A switching element connected to inputs of the main power amplifier and the at least one peak power amplifier is connected to a digital input signal divider (ET) having a plurality of outputs and an output combiner (C) is connected to outputs of the amplifier cores for the main power amplifier and the at least one peak power amplifier. A multi-harmonic transformation line (LAH) is connected at the amplifier core output of the main power amplifier and at the amplifier core output of the at least one peak power amplifier, and a circulator (Z1) is connected to the output of the output combiner or an impedance converter (AN1).
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: May 16, 2023
    Assignee: iAd Gesellschaft für Informatik, Automatisierung und Datenverarbeitung mbH
    Inventors: Hermann Hampel, Johannes Hampel, Maxym Yakymchuk, Georg Fischer, Daniel Popp
  • Publication number: 20230100287
    Abstract: Embodiments disclosed herein relate to techniques for measuring and/or detecting a signal-to-interference ratio (SIR) of a received signal at a user equipment (UE). The received signal may include a desired signal, co-channel interference, adjacent channel interference, and an in-band blocker. The UE may filter (e.g., remove) the various interferences and in-band blocker. The UE may determine or measure a power (or Received Signal Strength Indicator (RSSI)) of the desired signal and a power (or RSSI) of the co-channel interference separately because the desired signal and the co-channel interference overlap in frequency. To do so, the UE may determine a total power of the received signal including the desired signal and co-channel interference. The UE may receive the desired signal again while an uplink transmission is deactivated (and thus without the interference). The UE may then calculate the SIR based on the total power and the power of the desired signal.
    Type: Application
    Filed: September 2, 2022
    Publication date: March 30, 2023
    Inventors: Fucheng Wang, Anatoliy Sergey Ioffe, Camila Priale Olivares, Daniel Popp, Alexander Sayenko, Elmar Wagner
  • Publication number: 20230096224
    Abstract: Embodiments disclosed herein relate to techniques for measuring and/or detecting a signal-to-interference ratio (SIR) of a received signal at a user equipment (UE). The received signal may include a desired signal, co-channel interference, adjacent channel interference, and an in-band blocker. The UE may filter (e.g., remove) the various interferences and in-band blocker. The UE may determine or measure a power (or Received Signal Strength Indicator (RSSI)) of the desired signal and a power (or RSSI) of the co-channel interference separately because the desired signal and the co-channel interference overlap in frequency. To do so, the UE may determine a total power of the received signal including the desired signal and co-channel interference. The UE may receive the desired signal again while an uplink transmission is deactivated (and thus without the interference). The UE may then calculate the SIR based on the total power and the power of the desired signal.
    Type: Application
    Filed: October 18, 2021
    Publication date: March 30, 2023
    Inventors: Fucheng Wang, Anatoliy Sergey Ioffe, Camila Priale Olivares, Daniel Popp, Alexander Sayenko, Elmar Wagner
  • Publication number: 20230093484
    Abstract: User equipment (UE) applies a first code division multiplex access (CDMA) code to a baseband signal to generate a first signal, and a second CDMA code to the baseband signal to generate a second signal. The UE then transmits the first signal to a receiving device via a first antenna, and the second signal to the receiving device via a second antenna. The receiving device receives the first and second signals as a combined signal at an antenna, and extracts the first signal from the combined signal using the first CDMA code, and extracts the second signal from the combined signal using the second CDMA code. The CDMA codes may be real-valued or complex-valued. In some embodiments, the UE may separate the baseband signals into first and second portions, and transmit the first portion as part of the first signal and the second portion as part of the second signal.
    Type: Application
    Filed: March 22, 2022
    Publication date: March 23, 2023
    Inventors: Daniel Popp, Lydi Smaini, Anatoliy S. Ioffe
  • Publication number: 20230007570
    Abstract: A base station may send an indication of frequency subranges supported by the base station to user equipment, which may respond with an indication of the frequency subranges that are also supported by the user equipment. Additionally, a Spectrum Access System (SAS) controller, using environmental sensing capability sensors, may determine whether non-federal networks are disposed in a coverage area of a base station and neighboring coverage areas. If so, then the SAS may indicate to the base station to send an indication to user equipment in the coverage area to operate using a default power mode. Otherwise, the SAS may indicate to the base station to send an indication to the user equipment to operate using a lower power mode. Moreover, a base station may indicate a regulatory requirement to user equipment using network signaling value of multiple network signaling values corresponding to multiple regulatory requirements of multiple geographical regions.
    Type: Application
    Filed: September 2, 2022
    Publication date: January 5, 2023
    Inventors: Anatoliy Sergey Ioffe, Daniel Popp, Elmar Wagner, Fucheng Wang, Alexander Sayenko
  • Publication number: 20220417930
    Abstract: The present disclosure relates to systems and methods for indicating to a spectrum access system communication preferences of a base station and/or of a network operator. Different methods may be used to indicate the communication preferences, including a dedicated type parameter transmitted with spectrum allocation requests from the base station, a rule-based system where the spectrum access system accesses communication preferences of the base station and/or network operator through an identifier corresponding to a rule definition, or the like. The spectrum access system may assign a channel to the network operator based on its communication preferences, such as to determine a channel assignment to correspond to a channel aligned with a raster of communications to be used by the network operator. If the channel is not aligned, then the base station may shift a center frequency of the channel so that the channel aligns with the raster of communications.
    Type: Application
    Filed: September 1, 2022
    Publication date: December 29, 2022
    Inventors: Alexander Sayenko, Anatoliy Sergey Ioffe, Daniel Popp
  • Patent number: 11516804
    Abstract: The present disclosure relates to systems and methods for indicating to a spectrum access system communication preferences of a base station and/or of a network operator. Different methods may be used to indicate the communication preferences, including a dedicated type parameter transmitted with spectrum allocation requests from the base station, a rule-based system where the spectrum access system accesses communication preferences of the base station and/or network operator through an identifier corresponding to a rule definition, or the like. The spectrum access system may assign a channel to the network operator based on its communication preferences, such as to determine a channel assignment to correspond to a channel aligned with a raster of communications to be used by the network operator. If the channel is not aligned, then the base station may shift a center frequency of the channel so that the channel aligns with the raster of communications.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: November 29, 2022
    Assignee: Apple Inc.
    Inventors: Alexander Sayenko, Anatoliy Sergey Ioffe, Daniel Popp
  • Publication number: 20220361089
    Abstract: A base station may send an indication of frequency subranges supported by the base station to user equipment, which may respond with an indication of the frequency subranges that are also supported by the user equipment. Additionally, a Spectrum Access System (SAS) controller, using environmental sensing capability sensors, may determine whether non-federal networks are disposed in a coverage area of a base station and neighboring coverage areas. If so, then the SAS may indicate to the base station to send an indication to user equipment in the coverage area to operate using a default power mode. Otherwise, the SAS may indicate to the base station to send an indication to the user equipment to operate using a lower power mode. Moreover, a base station may indicate a regulatory requirement to user equipment using network signaling value of multiple network signaling values corresponding to multiple regulatory requirements of multiple geographical regions.
    Type: Application
    Filed: October 27, 2021
    Publication date: November 10, 2022
    Inventors: Anatoliy Sergey Ioffe, Daniel Popp, Elmar Wagner, Fucheng Wang, Alexander Sayenko
  • Publication number: 20220346035
    Abstract: User equipment may configure a transmitter or receiver to conform to regulations or standards of a geographical region to communicate with non-terrestrial networks (e.g., satellite networks). In one embodiment, the user equipment may receive an indication of a regulation or standard to which to conform to from a terrestrial communication node, and apply an emission mask to the transmitter based on the regulation or standard. The user equipment may additionally or alternatively configure the receiver to be compliant with a noise level tolerance of a received signal specified by the regulation or standard. In some embodiments, the user equipment may implement a frequency offset between the received signal and an interfering signal associated with the noise level tolerance that is scaled based at least on a channel bandwidth associated with the desired signal. Moreover, the user equipment may scale the noise level tolerance based on the frequency offset.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 27, 2022
    Inventors: Anatoliy S. Ioffe, Elmar Wagner, Daniel Popp, Fucheng Wang, Camila Priale Olivares, Alexander Sayenko
  • Publication number: 20220345207
    Abstract: User equipment may configure a transmitter or receiver to conform to regulations or standards of a geographical region to communicate with non-terrestrial networks (e.g., satellite networks). In one embodiment, the user equipment may receive an indication of a regulation or standard to which to conform to from a terrestrial communication node, and apply an emission mask to the transmitter based on the regulation or standard. The user equipment may additionally or alternatively configure the receiver to be compliant with a noise level tolerance of a received signal specified by the regulation or standard. In some embodiments, the user equipment may implement a frequency offset between the received signal and an interfering signal associated with the noise level tolerance that is scaled based at least on a channel bandwidth associated with the desired signal. Moreover, the user equipment may scale the noise level tolerance based on the frequency offset.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 27, 2022
    Inventors: Anatoliy S Ioffe, Elmar Wagner, Daniel Popp, Fucheng Wang, Camila Priale Olivares, Alexander Sayenko
  • Publication number: 20220345205
    Abstract: User equipment may configure a transmitter or receiver to conform to regulations or standards of a geographical region to communicate with non-terrestrial networks (e.g., satellite networks). In one embodiment, the user equipment may receive an indication of a regulation or standard to which to conform to from a terrestrial communication node, and apply an emission mask to the transmitter based on the regulation or standard. The user equipment may additionally or alternatively configure the receiver to be compliant with a noise level tolerance of a received signal specified by the regulation or standard. In some embodiments, the user equipment may implement a frequency offset between the received signal and an interfering signal associated with the noise level tolerance that is scaled based at least on a channel bandwidth associated with the desired signal. Moreover, the user equipment may scale the noise level tolerance based on the frequency offset.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 27, 2022
    Inventors: Anatoliy S. Ioffe, Elmar Wagner, Daniel Popp, Fucheng Wang, Camila Priale Olivares, Alexander Sayenko
  • Publication number: 20220247360
    Abstract: A transmitting and receiving device having a module (GSZ) with a configurable HF high-power amplifier (HPA) that includes a main power amplifier (DM) with a main amplifier core and at least one peak power amplifier (DP1) having an auxiliary amplifier core. A switching element connected to inputs of the main power amplifier and the at least one peak power amplifier is connected to a digital input signal divider (ET) having a plurality of outputs and an output combiner (C) is connected to outputs of the amplifier cores for the main power amplifier and the at least one peak power amplifier. A multi-harmonic transformation line (LAH) is connected at the amplifier core output of the main power amplifier and at the amplifier core output of the at least one peak power amplifier, and a circulator (Z1) is connected to the output of the output combiner or an impedance converter (AN1).
    Type: Application
    Filed: January 17, 2020
    Publication date: August 4, 2022
    Inventors: Hermann HAMPEL, Johannes HAMPEL, Maxym YAKYMCHUK, Georg FISCHER, Daniel POPP
  • Publication number: 20220225355
    Abstract: An electronic device may communicate with a wireless base station using a 5G New Radio communications protocol. The base station may balance control timing and receiver performance for the devices in its cell by scheduling communications based on the communications capabilities of each device. This may ensure that the base station is able to provide communications with satisfactory control timing and receiver performance even if multiple different types of device are within its cell. In addition, the device may perform open loop transmit power control operations and then closed loop power control operations. To minimize complexity of the device, the device may only transmit at a maximum output power level during the open loop operations. If desired, the device may only transmit at the maximum output power level when the device is unable to decode a downlink reference signal transmitted by the base station within a predetermined number of symbols.
    Type: Application
    Filed: January 6, 2022
    Publication date: July 14, 2022
    Inventors: Anatoliy S. Ioffe, Daniel Popp, Fucheng Wang, Camila Priale Olivares, Alexander Sayenko
  • Publication number: 20220046641
    Abstract: The present disclosure relates to systems and methods for indicating to a spectrum access system communication preferences of a base station and/or of a network operator. Different methods may be used to indicate the communication preferences, including a dedicated type parameter transmitted with spectrum allocation requests from the base station, a rule-based system where the spectrum access system accesses communication preferences of the base station and/or network operator through an identifier corresponding to a rule definition, or the like. The spectrum access system may assign a channel to the network operator based on its communication preferences, such as to determine a channel assignment to correspond to a channel aligned with a raster of communications to be used by the network operator. If the channel is not aligned, then the base station may shift a center frequency of the channel so that the channel aligns with the raster of communications.
    Type: Application
    Filed: March 26, 2021
    Publication date: February 10, 2022
    Inventors: Alexander Sayenko, Anatoliy Sergey Ioffe, Daniel Popp
  • Patent number: 10670423
    Abstract: A MEMS (Microelectromechanical System) INU (Inertial Navigation Unit) chip comprises a compact autonomous device undergoing motion tracks and analyzes its definite movement relative to local Earth coordinates with optimal accuracy and repeatability of lmm over distances of greater than two meters. The MEMS INU includes an Inertial Motion Tracking Device (IMTD) comprises a gyroscope, accelerometer, magnetometer, and digital processor programmed with a general purpose Inertial Measurement Engine (IME), an application specific Motion Analysis and Adaptation (MAA) program and a low power radio. The IMTD tracks its motion with optimum accuracy using compact practical sensors that may have noise and drift by periodically and autonomously checking its velocity changes at an optimum interval, computing a linear acceleration therefrom and determining a no-motion or motion condition relative to a threshold and correcting its velocity, position and acceleration errors when there is no motion.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 2, 2020
    Assignee: Inertialwave
    Inventors: Anthony Dorian Challoner, Byron Campbell Challoner, Jeremy Daniel Popp
  • Patent number: 10274509
    Abstract: A compact autonomous device undergoing motion tracks and analyzes its definite movement relative to local Earth coordinates with optimal accuracy and repeatability of 1 mm over distances of greater than two meters. The Inertial Motion Tracking Device (IMTD) comprises a gyroscope, accelerometer, magnetometer, and digital processor programmed with a general purpose Inertial Measurement Engine (IME), an application specific Motion Analysis and Adaptation (MAA) program and a low power radio. The IMTD tracks its motion with optimum accuracy using compact practical sensors that may have noise and drift by periodically and autonomously checking its velocity changes at an optimum interval, computing a linear acceleration therefrom and determining a no-motion or motion condition relative to a threshold and correcting its velocity, position and acceleration errors when there is no motion.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: April 30, 2019
    Assignee: Inertialwave
    Inventors: Anthony Dorian Challoner, Byron Campbell Challoner, Jeremy Daniel Popp
  • Publication number: 20180339577
    Abstract: A roof roller blind system for a motor vehicle, having a spring cartridge and a winding shaft is described, wherein the winding shaft comprises a non-circular inner cross-section, wherein an end portion of the spring cartridge contacts the inner cross-section of the winding shaft at least in portions in a torque-transmitting manner. A method for mounting a roof roller blind system for a motor vehicle is also described.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 29, 2018
    Inventors: Franz Adelmann, Daniel Poppe, Kai Stehning
  • Patent number: 9829710
    Abstract: The disclosure relates generally to a display panel, which in at least some situations includes multiple separate stacked layers or components that are combined together, such as to have one emission layer component with numerous pixels that emit light, and to have at least one control logic layer component that includes integrated circuits or other logic to control the emission of light by the pixels in the emission layer. The different layers may be separate silicon chips or wafers that are connected in a stacked structure via a flip chip technique, with the emission layer using AMOLED or other OLED pixels. The display panels may be designed and/or configured for use in head mounted displays (e.g., with a fully immersive virtual reality system). The disclosure also relates generally to techniques for manufacturing, testing and/or otherwise using such a display panel in various manners.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: November 28, 2017
    Assignee: Valve Corporation
    Inventors: Dan Newell, Jeremy Daniel Popp