Patents by Inventor Daniel Rodier

Daniel Rodier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7208123
    Abstract: A flow-through monitor for detecting molecular contamination (MC) within a fluid flow. The monitor has a diffusion chamber having an inlet port and an outlet port, and a structure for supporting a fluid flow from the inlet port to the outlet port. The structure includes a flow gap causing a diffusion of molecular contaminants into the diffusion chamber, while substantially preventing, for a rate of the fluid flow above a predetermined magnitude, particulate contaminants within the fluid from entering the diffusion chamber. A SAW device detects molecular contamination interior to the diffusion chamber. Fluid input to the flow-through monitor may be diluted by a pure fluid for extended monitor life. A system for aggregate sampling connects an ensemble manifold upstream of the flow-through monitor. A system for triggered sampling connects a sample preconcentrator downstream of the flow-through monitor. A chemically selective membrane may be located between the flow gap and the SAW.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: April 24, 2007
    Assignee: Particle Measuring Systems, Inc.
    Inventors: Brian A. Knollenberg, Daniel Rodier, Scott Waisanen
  • Patent number: 6945090
    Abstract: A molecular contamination monitor for monitoring molecular contamination on a surface of a subject surface susceptible to degradation by a molecular contaminant. The monitor includes a surface acoustic wave (SAW) device having a SAW measurement surface coated with a material that is equivalent to the subject material with respect to spontaneous contamination by a contaminant. In the preferred embodiment, the coating comprises the same material as the subject surface or a material that interacts chemically with the contaminant in an equivalent manner to the subject surface. Exemplary coatings include: photoresist, copper, silver, gold, platinum, titanium, tungsten, aluminum, nickel, metal oxides, stearic acid, silicon, gallium arsenide, gallium nitride, germanium, silicon germanium, silicon dioxide, silicon nitride, and glass. Exemplary coating methods include sputtering, CVD, ALD and misted deposition.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: September 20, 2005
    Assignee: Particle Measuring Systems, Inc.
    Inventor: Daniel Rodier
  • Publication number: 20050028593
    Abstract: A device for monitoring molecular contamination includes a measurement element comprising a high surface area material having a surface area greater than 100 square meters per gram, and a sensing circuit connected to the measurement element and providing an output signal characteristic of molecular contamination on the surface of the material. The high surface area material can be an aerogel, carbon, activated carbon, a polymer based on diphenyl p-phenylene oxide, silica, a resorcinol-formaldehyde organic polymer, alumina, or a nanocellular carbon foam or other material. The high surface area material can be doped with a specific molecule which interacts with a particular contaminant molecule.
    Type: Application
    Filed: August 4, 2003
    Publication date: February 10, 2005
    Applicant: Particle Measuring Systems, Inc.
    Inventor: Daniel Rodier
  • Publication number: 20040214334
    Abstract: A molecular contamination monitoring system includes a piezoelectric measurement sensor exposed to a molecular constituent to be measured; a piezoelectric reference sensor; and a filter for filtering said molecular constituent, the filter located between the reference sensor and the measurement environment. The reference sensor is exposed to the same ambient conditions of temperature, pressure and humidity as the measurement sensor. Alternatively, there may be a plurality of different reference sensors having different filters, or there may be a plurality of different measurement sensors.
    Type: Application
    Filed: April 23, 2003
    Publication date: October 28, 2004
    Applicant: Particle Measuring Systems, Inc.
    Inventors: Daniel Rodier, Scott Waisanen, Dale Griffin
  • Publication number: 20030233864
    Abstract: A molecular contamination monitor for monitoring molecular contamination on a surface of a subject surface susceptible to degradation by a molecular contaminant. The monitor includes a surface acoustic wave (SAW) device having a SAW measurement surface coated with a material that is equivalent to the subject material with respect to spontaneous contamination by a contaminant. In the preferred embodiment, the coating comprises the same material as the subject surface or a material that interacts chemically with the contaminant in an equivalent manner to the subject surface. Exemplary coatings include: photoresist, copper, silver, gold, platinum, titanium, tungsten, aluminum, nickel, metal oxides, stearic acid, silicon, gallium arsenide, gallium nitride, germanium, silicon germanium, silicon dioxide, silicon nitride, and glass. Exemplary coating methods include sputtering, CVD, ALD and misted deposition.
    Type: Application
    Filed: June 24, 2002
    Publication date: December 25, 2003
    Applicant: Particle Measuring Systems, Inc.
    Inventor: Daniel Rodier
  • Publication number: 20030235926
    Abstract: A flow-through monitor for detecting molecular contamination (MC) within a fluid flow. The monitor has a diffusion chamber having an inlet port and an outlet port, and a structure for supporting a fluid flow from the inlet port to the outlet port. The structure includes a flow gap causing a diffusion of molecular contaminants into the diffusion chamber, while substantially preventing, for a rate of the fluid flow above a predetermined magnitude, particulate contaminants within the fluid from entering the diffusion chamber. A SAW device detects molecular contamination interior to the diffusion chamber. Fluid input to the flow-through monitor may be diluted by a pure fluid for extended monitor life. A system for aggregate sampling connects an ensemble manifold upstream of the flow-through monitor. A system for triggered sampling connects a sample preconcentrator downstream of the flow-through monitor. A chemically selective membrane may be located between the flow gap and the SAW.
    Type: Application
    Filed: June 24, 2002
    Publication date: December 25, 2003
    Applicant: Particle Measuring Systems, Inc.
    Inventors: Brian A. Knollenberg, Daniel Rodier, Scott Waisanen